Skip to main content

New Insights in Nanoelectrodeposition: An Electrochemical Aggregative Growth Mechanism

  • Reference work entry
  • First Online:
Book cover Handbook of Nanoelectrochemistry

Abstract

Supported nanostructures represent the cornerstone for numerous applications in different fields such as electrocatalysis (fuel cells) or electroanalysis (sensors). In contrast to other methods, electrochemical deposition allows the growth of the nanostructures directly on the final support, improving the electron pathway within the substrate, nanostructure, and electrolyte. However, despite the increasing number of publications in the field, the early stages of electrochemical nanocrystal formation are still under discussion.

In this chapter, we first provide a survey on the traditional approaches to study the early stages of electrochemical nucleation and growth, together with the classical theories used to understand them. Next, we describe our most recent findings which have led to reformulate the Volmer-Weber island growth mechanism into an electrochemical aggregative growth mechanism which mimics the atomistic processes of the early stages of thin-film growth by considering nanoclusters of few nm as building blocks instead of single atoms. We prove that the early stages of nanoelectrodeposition are strongly affected by nanocluster self-limiting growth, surface diffusion, aggregation, and coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2(1):18–45

    Article  CAS  Google Scholar 

  2. Yu W, Porosoff MD, Chen JG (2012) Review of pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem Rev 112(11):5780–5817

    Article  CAS  Google Scholar 

  3. Chen AC, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110(6):3767–3804

    Article  CAS  Google Scholar 

  4. Welch CM, Simm AO, Compton RG (2006) Oxidation of electrodeposited copper on boron doped diamond in acidic solution: manipulating the size of copper nanoparticles using voltammetry. Electroanalysis 18(10):965–970

    Article  CAS  Google Scholar 

  5. Campbell FW, Compton RG (2010) The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396(1):241–259

    Article  CAS  Google Scholar 

  6. Rassaei L, Marken F, Sillanpää M, Amiri M, Cirtiu CM, Sillanpää M (2011) Nanoparticles in electrochemical sensors for environmental monitoring. Trends Anal Chem 30(11):1704–1715

    Article  CAS  Google Scholar 

  7. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1):18–52

    Article  CAS  Google Scholar 

  8. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  9. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150

    Article  CAS  Google Scholar 

  10. Murray CB, Sun SH, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45(1):47–56

    Article  CAS  Google Scholar 

  11. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946

    Article  CAS  Google Scholar 

  12. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 48(1):60–103

    Article  CAS  Google Scholar 

  13. Mohanty A, Garg N, Jin R (2010) A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew Chem Int Ed Engl 49(29):4962–4966

    Article  CAS  Google Scholar 

  14. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109(26):12663–12676

    Article  CAS  Google Scholar 

  15. Lee H, Susan E, Habas SK, Butcher D, Somorjai GA, Yang P (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Ed Engl 45(46):7824–7828. New insights into nano-electrodeposition 25

    Article  CAS  Google Scholar 

  16. Zhang B, Zhang C, He H, Yu Y, Wang L, Zhang J (2010) Electrochemical synthesis of catalytically active Ru/RuO 2 core-shell nanoparticles without stabilizer. Chem Mater 22(13):4056–4061

    Article  CAS  Google Scholar 

  17. Maillard F, Schreier S, Hanzlik M (2005) Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys Chem Chem Phys 7:385–393

    Article  CAS  Google Scholar 

  18. Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735

    Article  CAS  Google Scholar 

  19. Day TM, Unwin PR, Macpherson JV (2007) Factors controlling the electrodeposition of metal nanoparticles on pristine single walled carbon nanotubes. Nano Lett 7(1):51–57

    Article  CAS  Google Scholar 

  20. Kibsgaard J, Gorlin Y, Chen Z, Jaramillo TF (2012) Meso-structured platinum thin films: active and stable electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(18):7758–7765

    Article  CAS  Google Scholar 

  21. Paunovic M (2006) Fundamentals of electrochemical deposition. Wiley-Interscience, New York

    Google Scholar 

  22. Staikov G (2007) Electrocrystallization in nanotechnology. Wiley-VCH, Weinheim

    Google Scholar 

  23. Becker R, Döring W (1935) Kinetische Behandlung der Keimbildung in über sättigten Dämpfen. Ann Phys 416(8):719–752

    Article  Google Scholar 

  24. Venables JA, Spiller GDT, Hanbucken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47(4):399–459

    Article  Google Scholar 

  25. Budevski E, Staikov G, Lorenz W, Keusler K (1997) Electrochemical phase formation and growth. Wiley-VCH, Weinheim

    Google Scholar 

  26. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Article  CAS  Google Scholar 

  27. Scharifker BR, Mostany J, Palomar-Pardave M, Gonzalez I (1999) On the theory of the potentiostatic current transient for diffusion-? Controlled three-dimensional electrocrystallization processes. J Electrochem Soc 146(3):1005–1012

    Article  CAS  Google Scholar 

  28. Hyde ME, Compton RG (2003) A review of the analysis of multiple nucleation with diffusion controlled growth. J Electroanal Chem 549:1–12

    Article  CAS  Google Scholar 

  29. Milchev A, Heerman L (2003) Electrochemical nucleation and growth of nano- and microparticles: some theoretical and experimental aspects. Electrochim Acta 48(20–22):2903–2913

    Article  CAS  Google Scholar 

  30. Milchev A (2008) Electrocrystallization: nucleation and growth of nano-clusters on solid surfaces. Russ J Electrochem 44(6):619–645

    Article  CAS  Google Scholar 

  31. Scharifker BR, Mostany J (1984) 3-dimensional nucleation with diffusion controlled growth. 1. Number density of active-sites and nucleation rates per site. J Electroanal Chem 177(1–2):13–23

    Article  CAS  Google Scholar 

  32. Mirkin MV, Nilov AP (1990) 3-dimensional nucleation and growth under controlled potential. J Electroanal Chem 283(1–2):35–51

    Article  CAS  Google Scholar 

  33. Heerman L, Tarallo A (2000) Electrochemical nucleation with diffusion-limited growth. Properties and analysis of transients. Electrochem Commun 2(2):85–89

    Article  CAS  Google Scholar 

  34. Correia AN, Machado SAS, Avaca LA (2000) Direct observation of overlapping of growth centres in Ni and Co electrocrystallisation using atomic force microscopy. J Electroanal Chem 488(2):110–116

    Article  CAS  Google Scholar 

  35. Milchev A (1998) Electrochemical nucleation on active sites – what do we measure in reality? Part II. J Electroanal Chem 457(1–2):47–52

    Article  CAS  Google Scholar 

  36. Milchev A (1998) Electrochemical nucleation on active sites – what do we measure in reality? Part I. J Electroanal Chem 457(1–2):35–46

    Article  Google Scholar 

  37. Palomar-Pardave M, Scharifker BR, Arce EM, Romero-Romo M (2005) Nucleation and diffusion-controlled growth of electroactive centers. Electrochim Acta 50(24):4736–4745

    Article  CAS  Google Scholar 

  38. Milchev A (2008) Nucleation and growth of clusters through multi-step electrochemical reactions. J Electroanal Chem 612(1):42–46

    Article  CAS  Google Scholar 

  39. Zapryanova T, Hrussanova A, Milchev A (2007) Nucleation and growth of copper on glassy carbon: studies in extended overpotential interval. J Electroanal Chem 600(2):311–317

    Article  CAS  Google Scholar 

  40. Gonnissen D, Simons W, Hubin A (1997) Study of the initial stages of silver electrocrystallisation from silver thiosulphate complexes. 2. Analysis of current transients. J Electroanal Chem 435(1–2):149–155

    Article  CAS  Google Scholar 

  41. Zoval JV, Stiger RM, Biernacki PR, Penner RM (1996) Electrochemical deposition of silver nanocrystallites on the atomically smooth graphite basal plane. J Phys Chem 100(2):837–844

    Article  CAS  Google Scholar 

  42. Gloaguen F, Leger JM, Lamy C, Marmann A, Stimming U, Vogel R (1999) Platinum electrodeposition on graphite: electrochemical study and STM imaging. Electrochim Acta 44:1805–1816

    Article  CAS  Google Scholar 

  43. Ji C, Oskam G, Searson PC (2001) Electrochemical nucleation and growth of copper on Si(111). Surf Sci 492(1–2):115–124

    Article  CAS  Google Scholar 

  44. Oskam G, Searson PC (2000) Electrochemistry of gold deposition on n-Si(100). J Electrochem Soc 147(6):2199

    Article  CAS  Google Scholar 

  45. Jacobs JWM (1988) Note on a theory of three-dimensional nucleation with diffusion-controlled electrochemical growth. J Electroanal Chem 247:135–144

    Article  CAS  Google Scholar 

  46. Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6(2):238–242

    Article  CAS  Google Scholar 

  47. Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2(8):532–536

    Article  CAS  Google Scholar 

  48. Radisic A, Ross FM, Searson PC (2006) In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15):7862–7868

    Article  CAS  Google Scholar 

  49. Radisic A, Vereecken PM, Searson PC, Ross FM (2006) The morphology and nucleation kinetics of copper islands during electrodeposition. Surf Sci 600(9):1817–1826

    Article  CAS  Google Scholar 

  50. Serruya A, Scharifker BR, Gonzalez I, Oropeza MT, Palomar Pardave M (1996) Silver electrocrystallization from a nonpolluting aqueous leaching solution containing ammonia and chloride. J Appl Electrochem 26(4):451–457

    Article  CAS  Google Scholar 

  51. Stiger RM, Gorer S, Craft B, Penner RM (1999) Investigations of electrochemical silver nanocrystal growth on hydrogen-terminated silicon(100). Langmuir 15(3):790–798

    Article  CAS  Google Scholar 

  52. Radisic A, Long JG, Hoffmann PM, Searson PC (2001) Nucleation and growth of copper on TiN from pyrophosphate solution. J Electrochem Soc 148(1):C41

    Article  CAS  Google Scholar 

  53. Abyaneh MY (1982) Calculation of overlap for nucleation and three-dimensional growth of centres. Electrochim Acta 27(9):1329–1334

    Article  CAS  Google Scholar 

  54. Komsiyska L, Staikov G (2008) Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing [AuCl4](−). Electrochim Acta 54(2):168–172

    Article  CAS  Google Scholar 

  55. Serruya A, Mostany J, Scharifker BR (1999) The kinetics of mercury nucleation from Hg22+ and Hg2+ solutions on vitreous carbon electrodes. J Electroanal Chem 464:39–47

    Article  CAS  Google Scholar 

  56. Rezaei M, Tabaian SH, Haghshenas DF (2013) Electrochemical nucleation of palladium on graphene: a kinetic study with an emphasis on hydrogen co-reduction. Electrochim Acta 87:381–387

    Article  CAS  Google Scholar 

  57. Ustarroz J, Gupta U, Hubin A, Bals S, Terryn H (2010) Electrodeposition of Ag nanoparticles onto carbon coated TEM grids: a direct approach to study early stages of nucleation. Electrochem Commun 12(12):1706–1709

    Article  CAS  Google Scholar 

  58. Ustarroz J, Ke X, Hubin A, Bals S, Terryn H (2012) New insights into the early stages of nanoparticle electrodeposition. J Phys Chem C 116(3):2322–2329

    Article  CAS  Google Scholar 

  59. Ustarroz J (2013) New insights into nanoparticle electrodeposition: an electrochemical aggregative growth mechanism. PhD thesis, Vrije Universiteit Brussel

    Google Scholar 

  60. Ustarroz J, Altantzis T, Hammons JA, Hubin A, Bals S, Terryn H (2014) The role of nanocluster aggregation, coalescence, and recrystallization in the electrochemical deposition of platinum nanostructures. Chem Mater 26(7):2396–2406

    Article  CAS  Google Scholar 

  61. Lim B, Kobayashi H, Camargo PHC, Allard LF, Liu J, Xia Y (2010) New insights into the growth mechanism and surface structure of palladium nanocrystals. Nano Res 3(3):180–188

    Article  CAS  Google Scholar 

  62. Asoro MA, Kovar D, Shao-Horn Y, Allard LF, Ferreira PJ (2010) Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM. Nanotechnology 21(2):025701

    Article  CAS  Google Scholar 

  63. Zheng HM, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932):1309–1312

    Article  CAS  Google Scholar 

  64. Zhang ZY, Lagally MG (1997) Atomistic processes in the early stages of thin-film growth. Science 276(5311):377–383

    Article  CAS  Google Scholar 

  65. Ustarroz J, Hammons JA, Altantzis T, Hubin A, Bals S, Terryn H (2013) A generalized electrochemical aggregative growth mechanism. J Am Chem Soc 135:11550–11561

    Article  CAS  Google Scholar 

  66. Guo L, Oskam G, Radisic A, Hoffmann PM, Searson PC (2011) Island growth in electrodeposition. J Phys D Appl Phys 44(44):443001

    Article  Google Scholar 

  67. Murray CB (2009) Watching nanocrystals grow. Science 324(5932):1276–1277

    Article  CAS  Google Scholar 

  68. Colliex C (2012) Watching solution growth of nanoparticles in graphene cells. Science 336(6077):44–45

    Article  Google Scholar 

  69. Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Paul Alivisatos A (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077):61–64

    Article  CAS  Google Scholar 

  70. Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: nonclassical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8(28):3271–3287

    Article  CAS  Google Scholar 

  71. Shields SP, Richards VN, Buhro WE (2010) Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem Mater 22(10):3212–3225

    Article  CAS  Google Scholar 

  72. Xu J, Wilson AR, Rathmell AR, Howe J, Chi M, Wiley BJ (2011) Synthesis and catalytic properties of Au-Pd nanoflowers. ACS Nano 5(8):6119–6127

    Article  CAS  Google Scholar 

  73. Allongue P, Souteyrand E (1990) Metal electrodeposition on semiconductors: Part I. Comparison with glassy carbon in the case of platinum deposition. J Electroanal Chem 286:217–237

    Article  CAS  Google Scholar 

  74. Plyasova LM, Molina IY, Gavrilov AN, Cherepanova SV, Cherstiouk OV, Rudina NA, Savinova ER, Tsirlina GA (2006) Electrodeposited platinum revisited: tuning nanostructure via the deposition potential. Electrochim Acta 51(21):4477–4488

    Article  CAS  Google Scholar 

  75. Richards VN, Shields SP, Buhro WE (2011) Nucleation control in the aggregative growth of bismuth nanocrystals. Chem Mater 23(2):137–144

    Article  CAS  Google Scholar 

  76. Njoki PN, Luo J, Kamundi MM, Lim S, Zhong CJ (2010) Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles. Langmuir 26(16):13622–13629

    Article  CAS  Google Scholar 

  77. Liu H, Penner RM (2000) Size-selective electrodeposition of mesoscale metal particles in the uncoupled limit. J Phys Chem B 104(39):9131–9139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Fonds Wetenschappelijk Onderzoek in Vlaanderen (FWO, contract no. FWOAL527), the Flemish Hercules 3 program for large infrastructure and the Société Française de Bienfaisance et d’Enseignement (S.F.B.E.) de San Sebastian-Donostia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Ustarroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Ustarroz, J., Hubin, A., Terryn, H. (2016). New Insights in Nanoelectrodeposition: An Electrochemical Aggregative Growth Mechanism. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_10

Download citation

Publish with us

Policies and ethics