Skip to main content

Wnt Signaling in Osteosarcoma

  • Chapter
  • First Online:
Current Advances in Osteosarcoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 804))

Abstract

Osteosarcoma (OS) is the most common primary bone malignancy diagnosed in children and adolescents with a high propensity for local invasion and distant metastasis. Despite current multidisciplinary treatments, there has not been a drastic change in overall prognosis within the last two decades. With current treatments, 60–70 % of patients with localized disease survive. Given a propensity of Wnt signaling to control multiple cellular processes, including proliferation, cell fate determination, and differentiation, it is a critical pathway in OS disease progression. At the same time, this pathway is extremely complex with vast arrays of cross-talk. Even though decades of research have linked the role of Wnt to tumorigenesis, there are still outstanding areas that remain poorly understood and even controversial. The canonical Wnt pathway functions to regulate the levels of the transcriptional co-activator β-catenin, which ultimately controls key developmental gene expressions. Given the central role of this mediator, inhibition of Wnt/β-catenin signaling has been investigated as a potential strategy for cancer control. In OS, several secreted protein families modulate the Wnt/β-catenin signaling, including secreted Frizzled-related proteins (sFRPs), Wnt inhibitory protein (WIF), Dickkopf proteins (DKK-1,2,3), sclerostin, and small molecules. This chapter focuses on our current understanding of Wnt/β-catenin signaling in OS, based on recent in vitro and in vivo data. Wnt activates noncanonical signaling pathways as well that are independent of β-catenin which will be discussed. In addition, stem cells and their association with Wnt/β-catenin are important factors to consider. Ultimately, the multiple canonical and noncanonical Wnt/β-catenin agonists and antagonists need to be further explored for potential targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mirabello L, Troisi RJ, Savage SA (2009) Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115(7):1531–1543

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bacci G et al (2000) Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report. J Clin Oncol 18(24):4016–4027

    PubMed  CAS  Google Scholar 

  3. Mialou V et al (2005) Metastatic osteosarcoma at diagnosis: prognostic factors and long-term outcome – the French pediatric experience. Cancer 104(5):1100–1109

    Article  PubMed  Google Scholar 

  4. Hayden JB, Hoang BH (2006) Osteosarcoma: basic science and clinical implications. Orthop Clin North Am 37(1):1–7

    Article  PubMed  Google Scholar 

  5. Lewis IJ et al (2007) Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized phase III trial of the European Osteosarcoma Intergroup. J Natl Cancer Inst 99(2):112–128

    Article  PubMed  CAS  Google Scholar 

  6. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    Article  PubMed  CAS  Google Scholar 

  7. Nusse R, Varmus HE (1982) Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31(1):99–109

    Article  PubMed  CAS  Google Scholar 

  8. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    Article  PubMed  CAS  Google Scholar 

  9. Lustig B, Behrens J (2003) The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 129(4):199–221

    PubMed  CAS  Google Scholar 

  10. van Amerongen R, Mikels A, Nusse R (2008) Alternative wnt signaling is initiated by distinct receptors. Sci Signal 1(35):re9

    PubMed  Google Scholar 

  11. Waltzer L, Bienz M (1999) The control of beta-catenin and TCF during embryonic development and cancer. Cancer Metastasis Rev 18(2):231–246

    Article  PubMed  CAS  Google Scholar 

  12. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851

    PubMed  CAS  Google Scholar 

  13. Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9(1):15–21

    Article  PubMed  CAS  Google Scholar 

  14. Behrens J (2000) Control of beta-catenin signaling in tumor development. Ann N Y Acad Sci 910:21–33, discussion 33-5

    Article  PubMed  CAS  Google Scholar 

  15. Moon RT (2005) Wnt/beta-catenin pathway. Sci STKE 2005(271):cm1

    PubMed  Google Scholar 

  16. Yeh JR, Peterson RT (2009) Novel Wnt antagonists target porcupine and Axin. Nat Chem Biol 5(2):74–75

    Article  PubMed  CAS  Google Scholar 

  17. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  PubMed  CAS  Google Scholar 

  18. Thomas DM (2010) Wnts, bone and cancer. J Pathol 220(1):1–4

    Article  PubMed  CAS  Google Scholar 

  19. McQueen P et al (2011) The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev Anticancer Ther 11(8):1223–1232

    Article  PubMed  CAS  Google Scholar 

  20. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Jamieson C, Sharma M, Henderson BR (2012) Wnt signaling from membrane to nucleus: beta-catenin caught in a loop. Int J Biochem Cell Biol 44(6):847–850

    Article  PubMed  CAS  Google Scholar 

  22. Luu HH et al (2004) Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets 4(8):653–671

    Article  PubMed  CAS  Google Scholar 

  23. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  24. Zi X et al (2005) Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res 65(21):9762–9770

    Article  PubMed  CAS  Google Scholar 

  25. Mohinta S et al (2007) Wnt pathway and breast cancer. Front Biosci 12:4020–4033

    Article  PubMed  CAS  Google Scholar 

  26. Tomita H et al (2007) Development of gastric tumors in Apc(Min/+) mice by the activation of the beta-catenin/Tcf signaling pathway. Cancer Res 67(9):4079–4087

    Article  PubMed  CAS  Google Scholar 

  27. Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 10:5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Larue L, Delmas V (2006) The WNT/Beta-catenin pathway in melanoma. Front Biosci 11:733–742

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi-Yanaga F, Sasaguri T (2007) The Wnt/beta-catenin signaling pathway as a target in drug discovery. J Pharmacol Sci 104(4):293–302

    Article  PubMed  CAS  Google Scholar 

  30. Nusse R (2012) Wnt signaling. Cold Spring Harb Perspect Biol 4(5)

    Google Scholar 

  31. Korinek V et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275(5307):1784–1787

    Article  PubMed  CAS  Google Scholar 

  32. Morin PJ et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275(5307):1787–1790

    Article  PubMed  CAS  Google Scholar 

  33. Hoang BH (2012) Wnt, osteosarcoma, and future therapy. J Am Acad Orthop Surg 20(1):58–59

    Article  PubMed  Google Scholar 

  34. Hoang BH et al (2004) Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 109(1):106–111

    Article  PubMed  CAS  Google Scholar 

  35. Guo Y et al (2008) Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res 466(9):2039–2045

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guo Y et al (2007) Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 25(7):964–971

    Article  PubMed  CAS  Google Scholar 

  37. Hsieh SY et al (2004) Dickkopf-3/REIC functions as a suppressor gene of tumor growth. Oncogene 23(57):9183–9189

    PubMed  CAS  Google Scholar 

  38. Veeck J, Dahl E (2012) Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3. Biochim Biophys Acta 1825(1):18–28

    PubMed  CAS  Google Scholar 

  39. Hoang BH et al (2004) Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 64(8):2734–2739

    Article  PubMed  CAS  Google Scholar 

  40. Lin CH et al (2013) Dkk-3, a secreted wnt antagonist, suppresses tumorigenic potential and pulmonary metastasis in osteosarcoma. Sarcoma 2013:147541

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hoang B et al (1996) Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis. J Biol Chem 271(42):26131–26137

    Article  PubMed  CAS  Google Scholar 

  42. Leyns L et al (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88(6):747–756

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Guo Y et al (2008) Frzb, a secreted Wnt antagonist, decreases growth and invasiveness of fibrosarcoma cells associated with inhibition of Met signaling. Cancer Res 68(9):3350–3360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Patane S et al (2006) MET overexpression turns human primary osteoblasts into osteosarcomas. Cancer Res 66(9):4750–4757

    Article  PubMed  CAS  Google Scholar 

  45. Mandal D et al (2007) Severe suppression of Frzb/sFRP3 transcription in osteogenic sarcoma. Gene 386(1–2):131–138

    Article  PubMed  CAS  Google Scholar 

  46. DeAlmeida VI et al (2007) The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res 67(11):5371–5379

    Article  PubMed  CAS  Google Scholar 

  47. Wissmann C et al (2003) WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 201(2):204–212

    Article  PubMed  CAS  Google Scholar 

  48. Rubin EM et al (2010) Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma. Mol Cancer Ther 9(3):731–741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Hsieh JC et al (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398(6726):431–436

    Article  PubMed  CAS  Google Scholar 

  50. Lin YC et al (2006) Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun 341(2):635–640

    Article  PubMed  CAS  Google Scholar 

  51. Mazieres J et al (2004) Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 64(14):4717–4720

    Article  PubMed  CAS  Google Scholar 

  52. Ai L et al (2006) Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27(7):1341–1348

    Article  PubMed  CAS  Google Scholar 

  53. Taniguchi H et al (2005) Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24(53):7946–7952

    Article  PubMed  CAS  Google Scholar 

  54. Lee BB et al (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 15(19):6185–6191

    Article  PubMed  CAS  Google Scholar 

  55. Kansara M et al (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119(4):837–851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Chen B et al (2009) Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5(2):100–107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Park CH et al (2005) The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett 579(13):2965–2971

    Article  PubMed  CAS  Google Scholar 

  58. Hallett RM et al (2012) Small molecule antagonists of the Wnt/beta-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One 7(3):e33976

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Leow PC et al (2010) Antitumor activity of natural compounds, curcumin and p KF118–310, as Wnt/beta-catenin antagonists against human osteosarcoma cells. Invest New Drugs 28(6):766–782

    Article  PubMed  CAS  Google Scholar 

  60. Liao AT et al (2007) A novel small molecule Met inhibitor, PF2362376, exhibits biological activity against osteosarcoma. Vet Comp Oncol 5(3):177–196

    Article  PubMed  CAS  Google Scholar 

  61. McCleese JK et al (2009) The novel HSP90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines. Int J Cancer 125(12):2792–2801

    Article  PubMed  CAS  Google Scholar 

  62. Grandy D et al (2009) Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem 284(24):16256–16263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Li X et al (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280(20):19883–19887

    Article  PubMed  CAS  Google Scholar 

  64. Holdsworth G et al (2012) Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors. J Biol Chem 287(32):26464–26477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Lewiecki EM (2011) Sclerostin: a novel target for intervention in the treatment of osteoporosis. Discov Med 12(65):263–273

    PubMed  Google Scholar 

  66. Lewiecki EM (2011) Sclerostin monoclonal antibody therapy with AMG 785: a potential treatment for osteoporosis. Expert Opin Biol Ther 11(1):117–127

    Article  PubMed  CAS  Google Scholar 

  67. Cai Y et al (2010) Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma. J Pathol 220(1):24–33

    Article  PubMed  CAS  Google Scholar 

  68. Goentoro L, Kirschner MW (2009) Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell 36(5):872–884

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Oishi I et al (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8(7):645–654

    Article  PubMed  CAS  Google Scholar 

  70. Kohn AD, Moon RT (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38(3–4):439–446

    Article  PubMed  CAS  Google Scholar 

  71. Semenov MV et al (2007) SnapShot: noncanonical Wnt signaling pathways. Cell 131(7):1378

    Article  PubMed  Google Scholar 

  72. Ishitani T et al (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23(1):131–139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Dejmek J et al (2006) Wnt-5a/Ca2 + -induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol 26(16):6024–6036

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5(3):367–377

    Article  PubMed  CAS  Google Scholar 

  75. Wang Y, Nathans J (2007) Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134(4):647–658

    Article  PubMed  CAS  Google Scholar 

  76. Seifert JR, Mlodzik M (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8(2):126–138

    Article  PubMed  CAS  Google Scholar 

  77. Enomoto M et al (2009) Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene 28(36):3197–3208

    Article  PubMed  CAS  Google Scholar 

  78. Dravid G et al (2005) Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem Cells 23(10):1489–1501

    Article  PubMed  CAS  Google Scholar 

  79. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Article  PubMed  CAS  Google Scholar 

  80. Zhou P et al (1995) Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev 9(6):700–713

    Article  PubMed  CAS  Google Scholar 

  81. Tirino V et al (2011) Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. FASEB J 25(6):2022–2030

    Article  PubMed  CAS  Google Scholar 

  82. Wang L et al (2011) Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer 128(2):294–303

    Article  PubMed  CAS  Google Scholar 

  83. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5(12):997–1014

    Article  PubMed  CAS  Google Scholar 

  84. Luo J et al (2007) Wnt signaling and human diseases: what are the therapeutic implications? Lab Invest 87(2):97–103

    Article  PubMed  CAS  Google Scholar 

  85. Moon RT et al (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5(9):691–701

    Article  PubMed  CAS  Google Scholar 

  86. Wei W et al (2009) Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Mol Cancer 8:76

    Article  PubMed  PubMed Central  Google Scholar 

  87. You L et al (2004) An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 64(15):5385–5389

    Article  PubMed  CAS  Google Scholar 

  88. Shih IM et al (2000) The beta-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res 60(6):1671–1676

    PubMed  CAS  Google Scholar 

  89. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94(4):252–266

    Article  PubMed  CAS  Google Scholar 

  90. Chan TA (2002) Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. Lancet Oncol 3(3):166–174

    Article  PubMed  CAS  Google Scholar 

  91. Xia JJ et al (2010) Celecoxib inhibits beta-catenin-dependent survival of the human osteosarcoma MG-63 cell line. J Int Med Res 38(4):1294–1304

    Article  PubMed  CAS  Google Scholar 

  92. Takahashi-Yanaga F, Kahn M (2010) Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res 16(12):3153–3162

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang H. Hoang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, C.H., Ji, T., Chen, CF., Hoang, B.H. (2014). Wnt Signaling in Osteosarcoma. In: Kleinerman, M.D., E. (eds) Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-04843-7_2

Download citation

Publish with us

Policies and ethics