Skip to main content

Quantum Theory

  • Chapter
  • First Online:
  • 614 Accesses

Part of the book series: SpringerBriefs on Pioneers in Science and Practice ((BRIEFSTEXTS,volume 22))

Abstract

This essay is the centre of the book; the conciseness of the presentation, which creates difficulties for the critical participation of the reader, seems particularly painful to me here.

I come to praise the quantum, not to bury it.

F. Bopp

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This text was first published as: “Quantum Theory”, in: von Weizsäcker (1980).

  2. 2.

    “Matter and Consciousness” (Chap. 10) in this volume—ed.MD.

  3. 3.

    “Matter, Energy, Information” (Chap. 11) in this volume—ed.MD.

  4. 4.

    “Parmenides and Quantum Theory” in: Drieschner (2014).

  5. 5.

    I here leave aside the question of whether the contradictions might be avoided by theories like David Bohm’s. We are at this point concerned with the consistency and not with the uniqueness of the Copenhagen interpretation.

  6. 6.

    Wigner (1936: 6) has objected to the description of the measurement process in terms of mixtures by claiming that not even the unitary (i.e., quantum mechanically admissible) transformation of one mixture into another can increase the entropy; thus it cannot describe the irreversible aspects of the measurement process. This is true, but it is not an objection. Even in classical physics the increase in entropy is not an ‘objectively’ describable event. Stirring an incompressible liquid colored white and red in equal parts (Gibbs) does not result, objectively speaking, in pink regions, but only in multiply entwined borders of white and red; if the borders are sufficiently entwined, we can no longer follow them and we see pink. Analogously in quantum theory, no unitary transformation of a mixture can correspond to an irreversible process; instead, our description must ‘jump’ to a mixture of higher entropy.

  7. 7.

    Cf. Parts iii and iv of von Weizsäcker (1980).

  8. 8.

    Cf. iv.6 of von Weizsäcker (1980).

  9. 9.

    See Thirring (1959: 79).

  10. 10.

    Cf. ii.2. of von Weizsäcker (1980), identical with "The Second Law …" (Chap. 5) in this volume—(Ed. MD).

  11. 11.

    Cf. ii.2 and von Weizsäcker (1949).

  12. 12.

    See Boltzmann (1964).

  13. 13.

    See Ehrenfest (1959).

  14. 14.

    Cf. Böhme (1966).

  15. 15.

    Cf. i.6d, iv of Weizsäcker (1980); cf. “Parmenides and Quantum Theory”, in: Drieschner (2014).

  16. 16.

    Cf. i.4. of von Weizsäcker (1980)—(ed.MD).

  17. 17.

    This tense logic is formally different from the existing systems of which Prior has given a thoroughgoing account: Prior (1957/1967).

  18. 18.

    See Lorenzen’s (1962).

  19. 19.

    See Mittelstaedt (1976).

  20. 20.

    Cf. “Probability and Abstract Quantum Mechanics” in this volume (Chap. 9)—(ed.MD).

  21. 21.

    See Drieschner (1970).

  22. 22.

    Cf. i.5. of von Weizsäcker (1980)—(ed.MD).

  23. 23.

    Cf. iv.6d. of von Weizsäcker (1980).

  24. 24.

    Much of the analysis of these concepts is due to Scheibe (1964).

  25. 25.

    Of course ‘states’ here means ‘Schrödinger states’; we say that the object can change its state in time, while the definition of the states through which it passes can be given independently of time and—what matters here—of its environment.

  26. 26.

    The reduction of objects to alternatives mentioned under postulate B leads to this principle.

  27. 27.

    See Einstein et al. (1935).

  28. 28.

    Cf. iv.6d. of von Weizsäcker (1980).

  29. 29.

    In the following two postulates my approach differs from Drieschner’s. His postulate on the homogeneity of time would allow a weaker version of my postulate I. The relation between the two approaches has not yet been worked out in detail.

  30. 30.

    This should actually read ‘Any self-adjoint operator’—(ed.MD).

  31. 31.

    One might add that our reflections at the end of iii.3 and in iv.6d of Weizsäcker (1980) show the quantum theoretical concept of an object to be an exaggeration even within the world.

  32. 32.

    Cf. iv.4 “Possibility and Movement” of Weizsäcker (1980), reprinted in the volume Major Works in Philosophy, in this series—(ed.MD).

  33. 33.

    Cf. ii.3 g of von Weizsäcker (1980).

  34. 34.

    10 80 nucleons in 10120 elementary cells corresponds to an average of 10−40 nucleons per cell, or 10−1 nucleons per cubic cm, which agrees, very roughly, with the density of cosmic matter.

  35. 35.

    See Dirac (1938).

  36. 36.

    See Jordan (1937/1955).

  37. 37.

    Cf. ii.1.c.iii of von Weizsäcker (1980).

References

  • Böhme G., 1966: Über die Zeitmodi (Göttingen).

    Google Scholar 

  • Boltzmann, L., 1964: Lectures on Gas Theory, trans. by S. G. Brush (Berkeley: University of California Press).

    Google Scholar 

  • Dirac, P. A. M.,1938: in: Nature, 139: 323; Proceedings of the Royal Society (A), Vol. 165 (1938): 199.

    Google Scholar 

  • Drieschner, M., 1970: Quantum Mechanics as a General Theory of Objective Prediction (University of Hamburg).

    Google Scholar 

  • Drieschner, Michael (Ed.): von Weizsäcker, Carl Friedrich., 2014: Major Texts in Philosophy (Cham, Heidelberg et al.: Springer).

    Google Scholar 

  • Ehrenfest, P. and T., 1959: Mathematisch-Naturwissenschaftliche Blätter, Vol. 3 (1906); reprinted in P. Ehrenfest, Collected Scientific Papers (New York: Interscience Publishers).

    Google Scholar 

  • Einstein, A., Podolsky, B., Rosen, N., 1935: in: Physical Review, 47: 777.

    Google Scholar 

  • Jordan, P., 1937/1955: Naturwissenschaften, 25: 513; Schwerkraft und Weltall (Braunschweig).

    Google Scholar 

  • Lorenzen, P., 1962: Metamathematik (Mannheim).

    Google Scholar 

  • Mittelstaedt, P., 1976: Philosophical Problems of Modern Physics (Dordrecht, Holland, Boston: D. Reidel Publishing Co.).

    Google Scholar 

  • Prior A. N., 1957/1967: Time and Modality (Oxford: Oxford University Press); Past, Present and Future (Oxford: Oxford University Press).

    Google Scholar 

  • Scheibe E., 1964: Die kontingenten Aussagen in der Physik (Frankfurt am Main: Athenaum Verlag).

    Google Scholar 

  • Thirring, W., 1959: in Fortschritte der Physik: 79.

    Google Scholar 

  • von Weizsäcker, C. F., (1980) 2014: identical with “Parmenides and Quantum Theory”, in: Michael Drieschner (Ed.): Carl Friedrich von Weizsäcker: Major Texts in Philosophy (Cham, Heidelberg, New York, Dordrecht, London: Springer).

    Google Scholar 

  • von Weizsäcker C. F., 1949: The History of Nature, trans. by F. D. Wieck (Chicago: University of Chicago Press).

    Google Scholar 

  • von Weizsäcker, Carl Friedrich, 1980: The Unity of Nature (New York: Farrar Straus Giroux); it is a translation of: Die Einheit der Natur (Munich: Hanser, 1971): 2, 5.

    Google Scholar 

  • Wigner E., 1936: American Journal of Physics, 31: 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

von Weizsäcker, C.F. (2014). Quantum Theory. In: Drieschner, M. (eds) Carl Friedrich von Weizsäcker: Major Texts in Physics. SpringerBriefs on Pioneers in Science and Practice(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-03668-7_7

Download citation

Publish with us

Policies and ethics