Skip to main content

Idealized Models for FEA Derived from Generative Modeling Processes Based on Extrusion Primitives

  • Conference paper

Abstract

Shape idealization transformations are very common when adapting a CAD component to FEA requirements. Here, an idealization approach is proposed that is based on generative shape processes used to decompose an initial B-Rep object, i.e. extrusion processes. The corresponding primitives form the basis of candidate sub domains for idealization and their connections conveyed through the generative processes they belong to, bring robustness to set up the appropriate connections between idealized sub domains. Taking advantage of an existing construction tree as available in a CAD software does not help much because it may be complicated to use it for idealization processes. Using generative processes attached to an object that are no longer reduced to a single construction tree but to a graph containing all non trivial construction trees, is more useful for the engineer to evaluate variants of idealization. From this automated decomposition, each primitive is analyzed to define whether it can idealized or not. Subsequently, geometric interfaces between primitives are taken into account to determine more precisely the idealizable sub domains and their contours when primitives are incrementally merged to come back to the initial object.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boussuge, F., Léon, J.C., Hahmann, S., Fine, L.: Extraction of generative processes from b-rep shapes and application to idealization transformations. In: CAD, SPM Conference (to appear, 2013)

    Google Scholar 

  2. Buchele, S.F., Crawford, R.H.: Three-dimensional halfspace constructive solid geometry tree construction from implicit boundary representations. CAD 36, 1063–1073 (2004)

    Google Scholar 

  3. Chong, C.S., Kumar, A.S., Lee, K.H.: Automatic solid decomposition and reduction for non-manifold geometric model generation. CAD 36(13), 1357–1369 (2004)

    Google Scholar 

  4. Gao, S., Zhao, W., Lin, H., Yang, F., Chen, X.: Feature suppression based cad mesh model simplification. CAD 42(12), 1178–1188 (2010)

    Google Scholar 

  5. Han, J., Pratt, M., Regli, W.C.: Manufacturing feature recognition from solid models: A status report. IEEE Transactions on Robotics and Automation 16, 782–796 (2000)

    Article  Google Scholar 

  6. Joshi, S., Chang, T.C.: Graph-based heuristics for recognition of machined features from a 3d solid model. CAD 20(2), 58–66 (1988)

    MATH  Google Scholar 

  7. Kim, S., Lee, K., Hong, T., Kim, M., Jung, M., Song, Y.: An integrated approach to realize multi-resolution of b-rep model. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, SPM 2005, pp. 153–162 (2005)

    Google Scholar 

  8. Lee, K.Y., Armstrong, C.G., Price, M.A., Lamont, J.H.: A small feature suppression/unsuppression system for preparing b-rep models for analysis. In: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, SPM 2005, pp. 113–124 (2005)

    Google Scholar 

  9. Leyton, M.: A Generative Theory of Shape. LNCS, vol. 2145. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  10. Li, M., Langbein, F.C., Martin, R.R.: Constructing regularity feature trees for solid models. In: Kim, M.-S., Shimada, K. (eds.) GMP 2006. LNCS, vol. 4077, pp. 267–286. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Lim, T., Medellin, H., Torres-Sanchez, C., Corney, J.R., Ritchie, J.M., Davies, J.B.C.: Edge-based identification of dp-features on free-form solids. IEEE Trans. PAMI 27(6) (2005)

    Google Scholar 

  12. Liu, S.S., Gadh, R.: Automatic hexahedral mesh generation by recursive convex and swept volume decomposition. In: 6th International Meshing Roundtable, Sandia National Laboratories, pp. 217–231 (1997)

    Google Scholar 

  13. Lu, Y., Gadh, R., Tautges, T.J.: Feature based hex meshing methodology: feature recognition and volume decomposition. CAD 33(3), 221–232 (2001)

    Google Scholar 

  14. Makem, J.E., Armstrong, C.G., Robinson, T.T.: Automatic decomposition and efficient semi-structured meshing of complex solids. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, vol. 90, pp. 199–215. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Mäntylä, M.: An introduction to solid modeling. Computer Science Press, College Park (1988)

    Google Scholar 

  16. Rezayat, M.: Midsurface abstraction from 3d solid models: general theory and applications. CAD 28(1), 905–915 (1996)

    Google Scholar 

  17. Robinson, T.T., Armstrong, C., Fairey, R.: Automated mixed dimensional modelling from 2d and 3d cad models. Finite Elem. Anal. Des. 47(2), 151–165 (2011)

    Article  Google Scholar 

  18. Robinson, T.T., Armstrong, C.G., McSparron, G., Quenardel, A., Ou, H., McKeag, R.M.: Automated mixed dimensional modelling for the finite element analysis of swept and revolved cad features. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, SPM 2006, pp. 117–128 (2006)

    Google Scholar 

  19. Seo, J., Song, Y., Kim, S., Lee, K., Choi, Y., Chae, S.: Wrap-around operation for multi-resolution cad model. CAD and Applications 2(1-4), 67–76 (2005)

    Google Scholar 

  20. Shapiro, V., Vossler, D.L.: Separation for boundary to csg conversion. ACM Trans. Graph. 12(1), 35–55 (1993)

    Article  MATH  Google Scholar 

  21. Sheen, D.P., Son, T.G., Myung, D.K., Ryu, C., Lee, S.H., Lee, K., Yeo, T.J.: Transformation of a thin-walled solid model into a surface model via solid deflation. CAD 42(8), 720–730 (2010)

    Google Scholar 

  22. Venkataraman, S., Sohoni, M., Rajadhyaksha, R.: Removal of blends from boundary representation models. In: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, SMA 2002, pp. 83–94 (2002)

    Google Scholar 

  23. Zhu, H., Menq, C.H.: B-rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition. CAD 34(2), 109–123 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Boussuge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boussuge, F., Léon, J.C., Hahmann, S., Fine, L. (2014). Idealized Models for FEA Derived from Generative Modeling Processes Based on Extrusion Primitives. In: Sarrate, J., Staten, M. (eds) Proceedings of the 22nd International Meshing Roundtable. Springer, Cham. https://doi.org/10.1007/978-3-319-02335-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02335-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02334-2

  • Online ISBN: 978-3-319-02335-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics