Skip to main content

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 83))

Abstract

The emphasis of this chapter is on applications of vibrational spectroscopy to derive structural information of biomolecular ions. The section is organized by spectroscopic techniques and the types of tunable light sources that are employed. The potentials and limitations of these approaches with respect to recording infrared spectra are discussed, as well as the types of molecular systems that they can be applied to. The primary benefit of measuring infrared spectra on biomolecular ions derives from the compositional and structural information based on diagnostic vibrations. It is shown that IR spectroscopy in many cases is capable of distinguishing isomers. Moreover, cold spectroscopy methods provide extremely detailed structural information on gas-phase conformations. This chapter closes on an outlook of expected applications of infrared spectroscopy of biomolecules, focusing on the example of metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenn JB (2003) Angew Chem Int Ed Engl 42:3871–3894

    Article  CAS  Google Scholar 

  2. Karas M, Bahr U, Giessmann U (1991) Mass Spectrom Rev 10:335–357

    Article  CAS  Google Scholar 

  3. Ruotolo BT, Giles K, Campuzano I et al (2005) Science 310:1658–1661

    Article  CAS  Google Scholar 

  4. Uetrecht C, Rose RJ, van Duijn E et al (2010) Chem Soc Rev 39:1633–1655

    Article  CAS  Google Scholar 

  5. Flora JW, Muddiman DC (2001) Anal Chem 73:3305–3311

    Article  CAS  Google Scholar 

  6. Crowe MC, Brodbelt JS (2005) Anal Chem 77:5726–5734

    Article  CAS  Google Scholar 

  7. Hakansson K, Cooper HJ, Emmett MR et al (2001) Anal Chem 73:4530–4536

    Article  CAS  Google Scholar 

  8. Tseng K, Hedrick JL, Lebrilla CB (1999) Anal Chem 71:3747–3754

    Article  CAS  Google Scholar 

  9. Polfer NC, Valle JJ, Moore DT et al (2006) Anal Chem 78:670–679

    Article  CAS  Google Scholar 

  10. Stefan S, Eyler JR (2010) Int J Mass Spectrom 297:96–101

    Article  CAS  Google Scholar 

  11. Stefan S, Ehsan M, Pearson WL et al (2011) Anal Chem 83:8468–8476

    Article  CAS  Google Scholar 

  12. Mino WK Jr, Szczepanski J, Pearson W et al (2010) Int J Mass Spectrom 297:131–138

    Article  CAS  Google Scholar 

  13. Sinha RK, Erlekam U, Bythell B et al (2011) J Am Soc Mass Spectrom 22:1645–1650

    Article  CAS  Google Scholar 

  14. Yeh LI, Price JM, Lee YT (1989) J Am Chem Soc 111:5597–5604

    Article  CAS  Google Scholar 

  15. Peiris DM, Cheeseman MA, Ramanathan R et al (1993) J Phys Chem 97:7839–7843

    Article  CAS  Google Scholar 

  16. Scuderi D, Bakker JM, Durand S et al (2011) Int J Mass Spectrom 308:338–347

    Article  CAS  Google Scholar 

  17. Stedwell CN, Patrick AL, Gulyuz K et al (2012) Anal Chem 84:9907–9912

    Article  CAS  Google Scholar 

  18. Julian RR, Beauchamp JL (2001) Int J Mass Spectrom 210(211):613–623

    Google Scholar 

  19. Hammer NI, Diken EG, Roscioli JR et al (2005) J Chem Phys 122:244301

    Article  Google Scholar 

  20. Rizzo TR, Stearns JA, Boyarkin OV (2009) Int Rev Phys Chem 28:481–515

    Article  CAS  Google Scholar 

  21. Leavitt CM, Wolk AB, Fournier JA et al (2012) J Phys Chem Lett 3:1099–1105

    Article  CAS  Google Scholar 

  22. Garand E, Kamrath MZ, Jordan PA et al (2012) Science 335:694–698

    Article  CAS  Google Scholar 

  23. Wassermann TN, Boyarkin OV, Paizs B et al (2012) J Am Soc Mass Spectrom 23:1029–1045

    Article  CAS  Google Scholar 

  24. Kamariotis A, Boyarkin OV, Mercier SR et al (2006) J Am Chem Soc 128:905–916

    Article  CAS  Google Scholar 

  25. Oomens J, Polfer N, Moore DT et al (2005) Phys Chem Chem Phys 7:1345–1348

    Article  CAS  Google Scholar 

  26. Gaulton A, Bellis LJ, Bento AP et al (2012) Nucleic Acids Res 82:2456–2462

    Google Scholar 

  27. Polfer N, Paizs B, Snoek LC et al (2005) J Am Chem Soc 127:8571–8579

    Article  CAS  Google Scholar 

  28. Stedwell CN, Galindo JF, Gulyuz K et al (2013) J Phys Chem A 117:1181–1188

    Article  CAS  Google Scholar 

  29. Cagmat E, Szczepanski J, Pearson W et al (2010) Phys Chem Chem Phys 12:3474–3479

    Article  CAS  Google Scholar 

  30. Kamrath MZ, Garand E, Jordan PA et al (2011) J Am Chem Soc 133:6440–6448

    Article  CAS  Google Scholar 

  31. Stearns JA, Seaiby C, Boyarkin OV et al (2009) Phys Chem Chem Phys 11:125–132

    Article  CAS  Google Scholar 

  32. Stedwell CN, Galindo JF, Roitberg A et al. (2013) Ann Rev Anal Chem 6:267–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas C. Polfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polfer, N.C., Stedwell, C.N. (2013). Infrared Photodissociation of Biomolecular Ions. In: Polfer, N., Dugourd, P. (eds) Laser Photodissociation and Spectroscopy of Mass-separated Biomolecular Ions. Lecture Notes in Chemistry, vol 83. Springer, Cham. https://doi.org/10.1007/978-3-319-01252-0_4

Download citation

Publish with us

Policies and ethics