Skip to main content

Sedimentary Facies

  • Chapter
  • First Online:
  • 1480 Accesses

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

An outcrop investigation of Moghra Formation (Lower Miocene, Burdigialian age) was carried out in northwestern Egypt. Eighteen detailed sedimentary measured sections, located slightly obliquely to the depositional strike were described. Emphasis was placed on lithofacies variations, interpretations of depositional settings and a depositional model was constructed. In the study area, The Moghra Formation, some 260 m thickn, consists of eight lithofacies associations: (1) Tide-influenced fluvial channel deposits; (2) Flat laminated sandflat deposits; (3) Outer estuary sand bar deposits (Tidal Channel and Tidal Bars); (4) Tidal flat deposits; (5) Bioturbated fossiliferous shelf sandstones; (6) Bioturbated fossiliferous shelf carbonates; (7) Coarsening upward deltaic deposits; and (8) Fining upward channel deposits. These eight lithofacies associations are grouped into three main depositional environments: (1) Transgressive tide-dominated estuaries, (2) Open Shelf and (3) Regressive tide-dominated deltas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen G (1991) Sedimentary processes and facies in the Gironde estuary: a recent model for macrotidal estuarine systems. In: Smith DG, Reinson GE, Zaitlin BA, Rahmani RA (eds) Clastic tidal sedimentology, vol 16. Canadian Society of Petroleum Geologists, Memoir, pp 29–39

    Google Scholar 

  • Allen JRL (1980) Sand waves: a model of origin and internal structure. Sediment Geol 26:281–328

    Article  Google Scholar 

  • Allen JRL (1982) Mud drapes in sand-wave deposits: a physical model with application to the Folkstone Beds (early Cretaceous, southeast England). Proc Royal Soc Lond, v. Series A 306:291–345

    Google Scholar 

  • Allison MA, Khan SR, Goodbred SL, Kuehl SA (2003) Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain. Sediment Geol 155:317–342

    Article  Google Scholar 

  • Amorosi A (1995) Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. J Sediment Res B65(4):419–425

    Google Scholar 

  • Amorosi A (1997) Detecting compositional, spatial and temporal attributes of glaucony: a tool for provenance research: Sediment Geol 109:135–153

    Google Scholar 

  • Amorosi A, Centineo MC (1997) Glaucony from the Eocene of the Isle of Wight (southern UK): implications for basin analysis and sequence-stratigraphic interpretation. J Geol Soc 154(5):887–896

    Article  Google Scholar 

  • Archer AW (1998) Hierarchy of controls on cyclic rhythmite deposition: carboniferous basins of eastern and mid-continental USA. In: Alexander CR, Davis RA, Henry VJ (eds) Tidalites: processes and products, vol 61. SEPM Society for Sedimentary Geology Special Publication, pp 59–68

    Google Scholar 

  • Banerjee I (1989) Tidal sand sheet origin of the transgressive basal Colorado Sandstone (Albian): a subsurface study of the Cessford field, southern Alberta. Bull Can Pet Geol 37:1–17

    Google Scholar 

  • Bates CD (1953) Rational theory of delta formation. Am Assoc Pet Geol Bull 37:2119–2162

    Google Scholar 

  • Baum GR, Vail PR (1988) Sequence stratigraphic concepts applied to Paleogene outcrops, Gulf and Atlantic basins. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level changes: an integrated approach. SEPM, Special Publication 42:309–327

    Google Scholar 

  • Belt ES, Tibert NE, Curran HA, Diemer JA, Hartman JH, Kroeger TJ, Harwood DM (2005) Evidence for marine influence on a low-gradient coastal plain: ichnology and invertebrate paleontology of the lower Tongue River Member (Fort Union Formation, Middle Paleocene), Western Wiliston Basin, U.S.A. Rocky Mount Geol 40(1):1–24

    Article  Google Scholar 

  • Bhattacharya J, Walker RG (1992) Deltas. In: Walker, RG, James, NP (eds) Facies models: response to sea level change. Geological Association of Canada, St. John’s, pp 157–177

    Google Scholar 

  • Bhattacharya JP (2006) Deltas. In: Posamentier HW, Walker RG (eds) Facies models revisited, vol 84. SEPM (Society for Sedimentary Geology) Special Publication 84:237–292

    Google Scholar 

  • Boersma J, Terwindt J (1981) Neap-spring tide sequences of intertidal shoal deposits in a mesotidal estuary. Sedimentology 28:151–170

    Article  Google Scholar 

  • Bown T, Kraus M (1988) Geology and paleoenvironment of the Oligocene Jebel Qatrani Formation and adjacent rocks: Fayum Depression Egypt. US Geol Surv Prof Pap 1452:60

    Google Scholar 

  • Carr I, Gawthorpe R, Jackson C, Sharp I, Sadek A (2003) Sedimentology and sequence stratigraphy of early syn-rift tidal sediments: the Nukhul Formation, Suez Rift, Egypt. J Sediment Res 73:407–420

    Article  Google Scholar 

  • Carter R, Johnson D, Hooper K (1993) Episodic post-glacial sea-level rise and the sedimentary evolution of a tropical continental embayment (Cleveland Bay, Great Barrier Reef shelf, Australia). Aust J Earth Sci 40:229–255

    Article  Google Scholar 

  • Clifton HE (1983) Discrimination between subtidal and intertidal facies in Pleistocene deposits, Willapa Bay, Washington. J Sediment Petrol 53(2):353–369

    Google Scholar 

  • Clough BF (1992) In: Clough BF (ed) Mangrove ecosystems in Australia, structure, function, and management. Australian National University Press, Canberra, pp 3–17

    Google Scholar 

  • Clough BF, Andrews TJ, Cowan IR (1992) Physiological processes in mangroves. In: Clough BF (ed) Mangrove ecosystems in Australia, structure, function, and management. Australian National University Press, Canberra, pp 193–210

    Google Scholar 

  • Curran HA (1985) The trace fossil assemblage of a Cretaceous nearshore environment: Englishtown formation of Delaware, U.S.A. In: Curran HA (ed) Biogenic structures: their use in interpreting depositional environments, vol 35. SEPM Special Publication, pp 261–276

    Google Scholar 

  • Curran HA, Frey RW (1977) Pleistocene trace fossils from North Carolina (U.S.A.), and their Holocene analogues. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geological Journal Special Issue No. 9. Seel House Press, Liverpool, pp 139–162

    Google Scholar 

  • Dalrymple RW (1992) Tidal depositional systems. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, St. John’s, pp 195–218

    Google Scholar 

  • Dalrymple RW (2006) Incised valleys in time and space; an introduction to the volume and an examination of the controls on valley formation and filling. Spec PublSoc Sediment Geol 85:5–12

    Google Scholar 

  • Dalrymple RW, Choi K (2007) Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems; a schematic framework for environmental and sequence stratigraphic interpretation. Earth Sci Rev 81:135–174

    Article  Google Scholar 

  • Dalrymple RW, Boyd R, Zaitlin BA (1994) History of research, valley types and internal organization of incised-valley systems; introduction to the volume. In: Dalrymple RW, Boyd R, Zaitlin BA, Tulsa OK (eds) Incised-valley System; Origin and Sedimentary Sequences, vol 51. Special Publication SEPM (Society for Sedimentary Geology), pp 3–10

    Google Scholar 

  • Dalrymple RW, Knight RJ, Zaitlin BA, Middleton GV (1990) Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay -Salmon River estuary (Bay of Fundy). Sedimentology 37:577–612

    Article  Google Scholar 

  • Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146

    Article  Google Scholar 

  • De Gibert J, Netto R, Tognoli F, Grangeiro M (2006) Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 230:70–84

    Google Scholar 

  • De Raaf JFM, Boersma JR (1971) Tidal deposits and their sedimentary structures (seven examples from western Europe). Geol Mijnbouw 50:479–501

    Google Scholar 

  • Duke N (2006) Australia’s mangroves: the authoritative guide to Australia’s mangrove plants, vol 200. University of Queensland, Brisbane, pp 27–47

    Google Scholar 

  • Dworschak P (1983) The biology of Upogebia pusilla (Petagna)(Decapoda, Thalassinidea) I. The burrows. PSZN I: Marine. Ecology 4:19–43

    Google Scholar 

  • El Gezeery MN, Marzouk IM (1974) Miocene rock stratigraphy of Egypt. Egypt J Geol 18:1–59

    Google Scholar 

  • Elliott T (1986) Siliciclastic shorelines. In: Reading HG (ed) Sedimentary environments and facies. Blackwell Scientific Publications, Oxford, pp 155–188

    Google Scholar 

  • Ellison J (1988) Impacts of sediment burial on mangroves. Mar Pollut Bull 37:420–426

    Article  Google Scholar 

  • Erickson BR, Sanders AE (1991) Bioturbation structures in Pleistocene coastal plain sediments of South Carolina, North America. Sci Publ Sci Mus Minn 7:5–14

    Google Scholar 

  • Fairbridge RW (1980) The estuary; its definition and geodynamic cycle. In: Olausson E, Cato I (eds) Chemistry and biogeochemistry of estuaries. Wiley, Chichester, pp 1–35

    Google Scholar 

  • Falcon-Lang LH (1998) The impact of wildfire on an early carboniferous coastal environment, North Mayo, Ireland. Palaeogeogr Palaeoclimatol Palaeoecol 139:121–138

    Article  Google Scholar 

  • Finzel ES, Ridgway KD, Reifenstuhl RR, Blodgett RB, White JM, Decker PL (2009) Stratigraphic framework and estuarine depositional environments of the Miocene Bear Lake Formation, Bristol Bay Basin, Alaska: onshore equivalents to potential reservoir strata in a frontier gas-rich basin. AAPG Bull 93:379–405

    Google Scholar 

  • Frey R, Howard J (1975) Endobenthic adaptations of juvenile thalassinidean shrimp. Bull Geol Soc Den 24:283–297

    Google Scholar 

  • Frey RW, Howard JD, Pryor WA (1978) Ophiommorpha: its morphologic, taxonomic, and environmental significance. Paleogeogr Palaeoclimatol Palaeoecol 23:199–229

    Google Scholar 

  • Friedman GM, Sanders, JE (1978) Principles of sedimentology. Wiley, New York, p 792

    Google Scholar 

  • Furukawa K, Wolanski E (1996) Sedimentation in mangrove forests. Mangroves Salt Marshes 1:3–10

    Article  Google Scholar 

  • Furukawa K, Wolanski E, Mueller H. (1997) Currents and sediment transport in mangrove forests: Estuarine. Coast Shelf Sci 44:301–310

    Google Scholar 

  • Galloway WE (1989) Genetic stratigraphic sequences in basin analysis: architecture and genesis of flooding surface bounded depositional units. AAPG Bull 73:125–142

    Google Scholar 

  • Gingras M, George Pemberton S, Saunders T (2001) Bathymetry, sediment texture, and substrate cohesiveness; their impact on modern Glossifungites trace assemblages at Willapa Bay, Washington. Palaeogeogr Palaeoclimatol Palaeoecol 169:1–21

    Google Scholar 

  • Gingras M, Hubbard S, Pemberton S, Saunders T (2000) The Significance of Pleistocene Psilonichnu. at Willapa Bay, Washington. Palaios 15:142

    Article  Google Scholar 

  • Gingras MK, Pemberton SG, Saunders TDA, Clifton HE (1999) The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: variability in estuarine settings. Palaios 14:352–374

    Article  Google Scholar 

  • Gingras MK, Rasanen M, Ranzi A (2002) The significance of bioturbated inclined heterolithic stratification in the southern part of the Miocene Solimoes Formation, Rio Acre, Amazonia Brazil. Palaios 17:591–601

    Article  Google Scholar 

  • Giresse P, Lamboy M, Odin GS (1980) Evolution géométrique des supports de glauconitisation, reconstitution de leur paléo-environnement. Oceanologia Acta 3:251–260

    Google Scholar 

  • Griffis R, Chavez F (1988) Effects of sediment type on burrows of Callianassa californiensis Dana and C. gigas Dana. J Exp Mar Biol Ecol 117:239–253

    Article  Google Scholar 

  • Hampson GJ, Procter EJ, Kelly C (2008) Controls on isolated shallow-marine sandstone deposition and shelf construction; Late Cretaceous Western Interior Seaway, northern Utah and Colorado, U.S.A. Spec Publ Soc Sediment Geol 90:355–389

    Google Scholar 

  • Harris PT, Pattiaratchi CB, Cole AR, Keene JB (1992) Evolution of subtidal sandbanks in Moreton Bay, eastern Australia. Mar Geol 103:225–247

    Article  Google Scholar 

  • Harris M, Thayer P, Amidon M (1997) Sedimentology and depositional environments of middle Eocene terrigenous-carbonate strata, southeastern Atlantic Coastal Plain, USA. Sed Geol 108:141–161

    Article  Google Scholar 

  • Harris PT, Hughes MG, Baker EK, Dalrymple RW, Keene JB (2004) Sediment transport in distributary channels and its export to the pro-deltaic environment in a tidally-dominated delta: Fly River, Papua New Guinea. Cont Shelf Res 24:2431–2454

    Article  Google Scholar 

  • Heap AD, Bryce S, Ryan DA (2004) Facies evolution of Holocene estuaries and deltas; a large-sample statistical study from Australia. Sed Geol 168:1–17

    Article  Google Scholar 

  • Hesselbo SP, Huggett JM (2001) Glaucony in Ocean-Margin sequence stratigraphy (Oligocene–Pliocene, OffShore New Jercy, U.S.A.; ODP LEG 174A). J Sediment Res 71(4):599–607

    Article  Google Scholar 

  • Huggett JM, Gale AS (1997) Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, U.K. Geol Soc Lond 154:897–912

    Article  Google Scholar 

  • Ireland BJ, Curtis CD, Whiteman JA (1983) Compositional variation within some glauconites and illites and implications for their stability and origins. Sedimentology 30:769–786

    Article  Google Scholar 

  • Jackson C, Gawthorpe R, Carr I, Sharp I (2005) Normal faulting as a control on the stratigraphic development of shallow marine syn-rift sequences: the Nukhul and Lower Rudeis Formations, Hammam Faraun fault block, Suez Rift, Egypt: Sedimentology 52:313–338

    Google Scholar 

  • Jaeger JM, Nittrouer CA (1995) Tidal controls on the formation of fine-scale sedimentary strata near the Amazon River mouth. Mar Geol 125:259–281

    Article  Google Scholar 

  • Johnson H, Levell B (1995) Sedimentology of a transgressive, estuarine sand complex: the Lower Cretaceous Woburn Sands (Lower Greensand), southern England: sedimentary facies analysis. Spec Publ Int Assoc Sedimentol 22:17–46

    Google Scholar 

  • Kelly JC, Webb JA (1999) The genesis of glaucony in the Oligo-Miocene Torquay Group, southeastern Australia: petrographic and geochemical evidence. Sediment Geol 125:99–114

    Google Scholar 

  • Kitamura A (1998) Glaucony and carbonate grains as indicators of the condensed section: Omma formation, Japan. Sed Geol 122:151–163

    Article  Google Scholar 

  • Kitazawa T (2007) Pleistocene macrotidal tide-dominated estuary-delta succession, along the Dong Nai River, southern Vietnam. Sed Geol 194:115–140

    Article  Google Scholar 

  • Klein G Dev (1970) Depositional and dispersal dynamics of intertidal sand bars. J Sediment Petrol 40:1095–1127

    Google Scholar 

  • Kreisa R, Moila R (1986) Sigmoidal tidal bundles and other tide-generated sedimentary structures of the Curtis Formation, Utah. Bull Geol Soc Am 97:381

    Google Scholar 

  • Leo RF, Barghoorn ES (1976) Silicification of wood: Botanical Museum Leaflets, vol 25. Harvard University, Cambridge, p 47

    Google Scholar 

  • Lindholm R (1987) A practical approach to sedimentology. Allen & Unwin, London 276 p

    Book  Google Scholar 

  • Løseth TM, Ryseth AE, Young M (2009) Sedimentology and sequence stratigraphy of the Middle Jurassic Tarbert Formation, Oseberg South area (northern North Sea). Basin Res 21:597–619

    Article  Google Scholar 

  • Loutit TS, Hardenbol J, Vail PR, Baum GR (1988) Condensed sections: the key to age determination and correlation of continental margin sequences. In: Wilgus CK, Hastings BS, Kendall CGSC, Posamentier HW, Ross CA, Van Wagoner JC (eds) Sea-level changes: an integrated approach, Society of Economic Paleontologists and Mineralogists, Special Publication 42:183–213

    Google Scholar 

  • MacEachern JA, Bann KL (2008) The role of ichnology in refining shallow marine facies models. In: Hampson G, Steel R, Burgess P, Dalrymple R (eds) Recent advances in models of siliciclastic shallow-marine stratigraphy, vol 90. SEPM (Society for Sedimentary Geology) Special Publication, pp 73–116

    Google Scholar 

  • Maguregui J, Tyler N (1991) Evolution of middle Eocene tide-dominated deltaic sandstones, Lagunillas Field, Maracaibo Basin, western Venezuela. In: Miall AD, Tyler N (eds) The three-dimensional facies architecture of terrigenous clastic sediments, and its implications for hydrocarbon discovery and recovery, SEPM (Society for Sedimentary Geology), Concepts in Sedimentology and Paleontology 3:233–244

    Google Scholar 

  • Martino RL, Curran HA (1990) Sedimentology, ichnology and paleoenvironments of the Upper Cretaceous Wenonah and Mt. Laurel Formation, New Jersey. J Sediment Petrol 60(1):125–144

    Google Scholar 

  • McCracken SR, Compton, J., and Hicks, K., 1996, Sequence-stratigraphic significance of glaucony-rich lithofacies at Site 903. In: Mountain GS, Miller KG, Blum P, Poag CW, Twitchell DC (eds) Proceedings of the Ocean Drilling Program, Scientific Results, pp 171–187

    Google Scholar 

  • Mccrimmon GG, Arnott RWC (2002) The Clearwater Formation, Cold Lake, Alberta: a world class hydrocarbon reservoir hosted in a complex succession of tide-dominated deltaic deposits. Bull Can Pet Geol 50:370–392

    Article  Google Scholar 

  • Mcgill JT (1958) Map of coastal landforms of the world. Geogr Rev 48:402–405

    Article  Google Scholar 

  • Middleton GV (1991) A short historical review or clastic tidal sedimentology. In: Smith DG, Reinson GE, Zaitlin BA, Rahmani RA (eds) Clastic tidal sedimentology. Can Soc Petrol Geol 16:ix–xv

    Google Scholar 

  • Miller MF, Curran HA, Martino RL (1998) Ophiomorpha nodosa in estuarine sands of the lower Miocene Calvert Formation at the Pollack Farm Site, Delaware. In: Benson RN (ed) Geology and paleontology of the lower Miocene Pollack Farm Fossil Site, Delaware, Delaware Geological Survey Special Publication No. 21, pp 41–46

    Google Scholar 

  • Milliman J (1972) Atlantic continental shelf and slope of the United States-petrology of the sand fraction of sediments, northern New Jersey to southern Florida. US Geol Surv 529-J:Jl–J40

    Google Scholar 

  • Myrow PM (1995) Thalassinoides and the enigma of Early Paleozoic open-framework burrow systems. Palaios 10:58–74

    Article  Google Scholar 

  • Nio SD, Yang CS (1991a) Diagnostic attributes of clastic tidal deposits: a review. In: Smith DG, Reinson GE, Zaitlin BA, Rahmani RA (eds) Clastic tidal sedimentology. Canadian Society of Petroleum Geologists Memoir, Calgary, pp 3–28

    Google Scholar 

  • Nio SD, Yang CS (1991b) Sea-level fluctuations and geometric variability of tide-dominated sandbodies. Sed Geol 70:161–193

    Article  Google Scholar 

  • Odin G (1988) Glaucony from the Gulf of Guinea. Green Marine Clays: oolitic ironstone facies, verdine facies, glaucony facies and celadonite-bearing facies; a comparative study, Amsterdam, Elsevier, Developments in Sedimentology. GS Odin 45:205–217

    Google Scholar 

  • Odin G, Dodson M (1982) Zero isotopic age of glauconies. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, Chichester, pp 277–305

    Google Scholar 

  • Odin GS, Fullagar PD (1988) Geological significance of the glaucony facies. In: Odin GS (ed) Green Marine Clays: oolitic ironstone facies, verdine facies, glaucony facies and celadonite-bearing facies; a comparative study. Elsevier, Developments in Sedimentology, Amsterdam, pp 295–332

    Google Scholar 

  • Odin GS, Matter A (1981) De glauconiarum origine. Sedimentology 28:611–641

    Article  Google Scholar 

  • Olivero EB, Ponce JJ, Martinioni R (2008) Sedimentology and architecture of sharp-based tidal sandstones in the upper Marambio Group, Maastrichtian of Antarctica. Sediment Geol 210:11–26

    Google Scholar 

  • Olsen T, Mellere D, Olsen T (1999) Facies architecture and geometry of landward-stepping shoreface tongues: the Upper Cretaceous Cliff House Sandstone (Mancos Canyon, south-west Colorado). Sedimentology 46:603–625

    Article  Google Scholar 

  • Pemberton S (1992) Applications of ichnology to petroleum exploration—a core workshop. Society of Economic Paleontologists and Mineralogists, p 429

    Google Scholar 

  • Pemberton SG, Spila M, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs Jeanne d’Arc Basin. Ottawa, Geological Association of Canada. Short Course Notes 15:343

    Google Scholar 

  • Perry CT, Berkeley A, Smithers SG (2008) Microfacies characteristics of a tropical, mangrove-fringed shoreline, Cleveland Bay, queensland, Australia: sedimentary and taphonomic controls on mangrove Facies development. J Sediment Res 78:77–97

    Google Scholar 

  • Pickett TE, Kraft JC, Smith K (1971) Cretaceous burrows—Chesapeake and Delaware Canal, Delaware. J Paleontol 45:209–211

    Google Scholar 

  • Plaziat J (1974) Mollusc distribution and its value for recognition of ancient mangroves. In: International symposium on the biology and management of Mangroves, Honolulu, pp 456–465

    Google Scholar 

  • Plaziat J (1995) Modern and fossil mangroves and mangals: their climatic and biogeographic variability. In: Bosence D, Allison P (eds) Marine palaeoenvironmental analysis from Fossils, Geological Society London, Special Publications, pp 73–96

    Google Scholar 

  • Pontén A, Plink-Björklund P (2009) Process regime changes across a regressive to transgressive turnaround in a Shelf-Slope Basin, Eocene Central Basin of Spitsbergen. J Sediment Res 79:2–23

    Google Scholar 

  • Porebski S (2000) Shelf-valley compound fill produced by fault subsidence and eustatic sea level changes, Eocene LaMeseta Formation, Seymour Island, Antarctica. Geology 28:147–150

    Google Scholar 

  • Pritchard DW (1967) What is an estuary; physical viewpoint. In: Lauff GH (ed) Estuaries. AAAS Publication (American Association for the Advancement of Science), Washington, DC, pp 3–5

    Google Scholar 

  • Ranger M, Pemberton S (1992) The Sedimentology and ichnology of estuarine point bars in the McMuarry Formation of the Athabasca Oil Sands Deposit, northeastern Alberta, Canada. Applications of Ichnology to Petroleum Exploration, vol 17. Pemberton, S. G., SEPM Core Workshop Notes, pp 401–421

    Google Scholar 

  • Reading HG, Collinson JD (1996) Clastic coasts. In: Reading HG (ed) Sedimentary environments; processes, facies and stratigraphy. Blackwell Science, Oxford, pp 154–231

    Google Scholar 

  • Reineck HE, Singh IB (1973) Depositional sedimentary environments with references to terrigenous clastics. Springer, New York, 431 p

    Google Scholar 

  • Reineck HE, Wunderlich F (1968) Classification and origin of flaser and lenticular bedding. Sedimentology 11:99–104

    Article  Google Scholar 

  • Retallack GJ (1977) Triassic palaeosols in the upper Narrabeen Group of New South Wales. Part II. Classification and reconstruction. J Geol Soc Aust 24:19–35

    Google Scholar 

  • Rice A, Chapman C (1971) Observations on the burrows and burrowing behaviour of two mud-dwelling decapod crustaceans, Nephrops norvegicus and Goneplax rhomboides. Marine Biol 10:330–342

    Google Scholar 

  • Roberts EM (2007) Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah. Sediment Geol 197:207–233

    Google Scholar 

  • Rogers K, Saintlan N, Cahoon D (2005) Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia. Wetl Ecol Manage 13:87–598

    Google Scholar 

  • Rossetti DF, Júnior AES (2004) Facies architecture in a tectonically influenced estuarine incised valley fill of Miocene age, northern Brazil. J S Am Earth Sci 17:267–284

    Article  Google Scholar 

  • Räsänen ME, Linna AM, Santos JCR, Negri FR (1995) Late Miocene tidal deposits in the Amazonian foreland basin. Science 269:386–390

    Article  Google Scholar 

  • Saenger P (1992) Morphological, anatomical, and reproductive adaptation of Australian mangroves. In: Clough BF (ed) Mangrove ecosystems in Australia, structure, function, and management. Australian National University Press, Canberra, pp 153–192

    Google Scholar 

  • Said R (1962) The geology of Egypt. New York, Elsevier Publishing Company, Amsterdam 370 p

    Google Scholar 

  • Scholle P, Ulmer-Scholle D (2003) A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. Am Assoc Petrol Geol Bull Mem 77:474

    Google Scholar 

  • Scurfield G, Segnit ER (1984) Petrification of wood by silica minerals. Sed Geol 39:149–167

    Article  Google Scholar 

  • Shanley KW, McCabe PJ, Hettinger RD (1992) Tidal influence in Cretaceous fluvial strata from Utah, U.S.A.: a key to sequence-stratigraphic interpretation. Sedimentology 39:905–930

    Article  Google Scholar 

  • Shanmugam G (1988) Origin, recognition, and importance of erosional unconformities in sedimentary basins. In: Kleinspehn KL, Poala C (eds) New perspectives in basin analysis. Springer, New York, pp 83–108

    Google Scholar 

  • Shanmugam G (2003) Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Mar Pet Geol 20:471–491

    Article  Google Scholar 

  • Shanmugan G, Poffenberger M, Alava JT (1998) Tide-dominated estuarine facies in the Hollin and Napo (“T” and “U”) formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador. In: Annual meeting expanded abstracts—American Association of Petroleum Geologists, vol 1998

    Google Scholar 

  • Shanmugam G, Poffenberger M, Toro Alava J, Shanmugan G, Alava JT, Anonymous (2000) Tide-dominated estuarine facies in the Hollin and Napo (“T” and “U”) Formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador. AAPG Bull 84:652–682

    Google Scholar 

  • Shinn E (1968) Burrowing in recent lime sediments of Florida and the Bahamas. J Paleontol 42:879–894

    Google Scholar 

  • Smith DG (1988) Tidal bundles and mud couplets in the McMurray Formation, Northeastern Alberta, Canada. Can Soc Petrol Geol 36:216–219

    Google Scholar 

  • Smith DG (1989) Comparative sedimentology of mesotidal (2 to 4 m) estuarine channel point bar deposits from modern examples and ancient Athabasca oil sands (Lower Cretaceous), McMurray Formation. In: Reinson GE (ed) Modern and ancient examples of clastic tidal deposits; a core and peel workshop. Canadian Society of Petroleum Geologists, Calgary, pp 60–65

    Google Scholar 

  • Spalding M, Blasco F, Field C (1997) World Mangrove Atlas, Okinawa: Japan. The international society for Mangrove ecosystems, p 178

    Google Scholar 

  • Stein CL (1982) Silica recrystallization in petrified wood. J Sediment Petrol 52(4):1277–1282

    Google Scholar 

  • Stonecipher SA (1999) Genetic characteristics of glauconite and siderite; implications for the origin of ambiguous isolated marine sandbodies. In: Bergman KM, Sneddon JW (eds) Isolated shallow marine sand bodies; Sequence stratigraphic analysis and sedimentologic interpretation, vol 64. SEPM, Special Publication, pp 191–204

    Google Scholar 

  • Strahler AN, Strahler AH (1974) Introduction to environmental science. Hamilton Publ. Co., Santa Barbara 633 p

    Google Scholar 

  • Stratigraphic Sub-Committe of the National Committe Geological Sciences (1974) Miocene rock stratigraphy of Egypt. Egypt J Geol Cairo, National Information and Documentation Centre (NIDOC), 18:1–69 pp

    Google Scholar 

  • Terwindt JHJ (1981) Origin and sequences of sedimentary structures in inshore mesotidal deposits of the North Sea. In: Nio SD, Shuttenhelm RTE, Van Weering Tj CE (eds) Holocene marine sedimentation in the North Sea Basin, International Association of Sedimentologists, Special Publication, pp 4–26

    Google Scholar 

  • Thomas RG, Smith DG, Wood, JM, Visser J, Calverly-Range EA., Koster EH (1987) Inclined heterolithic stratification: terminology, description, interpretation and significance. Sediment Geol 53:123–179

    Google Scholar 

  • Tucker M, Wright VP, Dickson JAD (1990) Carbonate sedimentology. Wiley-Blackwell, Oxford, 482 p

    Google Scholar 

  • Visser MJ (1980) Neap-Spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology 8:543–546

    Article  Google Scholar 

  • Waller T (1991) Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae). Scallops Biol Ecol Aquacult 1:73

    Google Scholar 

  • Walsha JP, Nittrouer CA (2004) Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, Gulf Papua Marine Geol 208:225–248

    Google Scholar 

  • Wells JT (1995) Tidal-dominated estuaries and tidal rivers. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Series Development in Sedimentology, vol 53. Elsevier, Amsterdam, pp 179–205, 179–205, 471 p)

    Google Scholar 

  • Willis BJ (2005) Deposits of tide-influenced river deltas. In: Giosan L, Bhattacharya JP (eds) River Deltas—concepts, models and examples: special publication, Society of Economic Paleontologists and Mineralogists, pp 87–129

    Google Scholar 

  • Willis BJ, Bhattacharya JP, Gabel SL, White CD (1999) Architecture of a tide-influenced river delta in the Frontier Formation of central Wyoming, USA. Sedimentology 46:667–688

    Article  Google Scholar 

  • Willis BJ, Gabel S (2001) Sharp-based, tide-dominated deltas of the Sego Sandstone, Book Cliffs, USA. Sedimentology 48:479–506

    Google Scholar 

  • Willis BJ, Gabel SL (2003) Formation of deep incisions into Tide-Dominated River Deltas: implications for the stratigraphy of the sego sandstone, Book Cliffs, Utah, U.S.A. J Sediment Res 73:246–263

    Article  Google Scholar 

  • Witzke BJ, Ludvigson GA, White TS Brenner RL (1999) Marine-influenced sedimentation in the Dakota Fm, Cretaceous (Albian—Cenomanian), central U.S.; Implications for sequence stratigraphy and paleogeography in the Western Interior. Geol Soc Am 31:425 (Abstracts with program)

    Google Scholar 

  • Wonham J, Elliott T (1996) High-resolution sequence stratigraphy of a mid-Cretaceous estuarine complex: the Woburn Sands of the Leighton Buzzard area, southern England. Geol Soc Lond Spec Publ 103:41

    Google Scholar 

  • Woodroffe C (1992) Mangrove sediments and geomorphology. In: Robertson A, Alongi D (eds) Tropical Mangrove ecosystems. American Geophysical Union, Coastal and Estuarine Studies, Washington, DC, pp 7–41

    Chapter  Google Scholar 

  • Woodroffe C, Bardsley K, Ward P, Hanley J (1988) Production of mangrove litter in a macrotidal embayment, Darwin Harbour, NT, Australia. Estuar Coast Shelf Sci 26:581–598

    Google Scholar 

  • Woodroffe C, Grindrod J (1991) Mangrove biogeography: the role of Quaternary environmental and sea-level change. J Biogeogr 18:479–492

    Article  Google Scholar 

  • Yoshida S, Johnson HD, Pye K, Dixon RJ, Bann KL, Fielding CR, Maceachern JA, Tye SC (2004) Transgressive changes from tidal estuarine to marine embayment depositional systems: the Lower Cretaceous Woburn Sands of southern England and comparison with Holocene analogs differentiation of estuarine and offshore marine deposits using integrated ichnology and sedimentology; Permian Pebbley Beach Formation, Sydney Basin, Australia. AAPG Bull 88:1433–1460

    Google Scholar 

  • Zaitlin BA, Dalrymple RW, Boyd R (1994) The stratigraphic organization of incised-valley systems associated with relative sea-level change. In: Dalrymple RW, Boyd R, Zaitlin BA (eds) Incised-valley systems: origin and sedimentary sequences, vol 51. SEPM Special Publication, pp 45–60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safiya M. Hassan .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Hassan, S.M. (2013). Sedimentary Facies. In: Sequence Stratigraphy of the Lower Miocene Moghra Formation in the Qattara Depression, North Western Desert, Egypt. SpringerBriefs in Earth Sciences. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00330-6_3

Download citation

Publish with us

Policies and ethics