Skip to main content

A History of Iron Metabolism in the Mycobacteria

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

Abstract

The importance of iron to the metabolism of the mycobacteria was gradually appreciated during the first half of the last century. Frank Winder working in Dublin in the 1950s and 1960s was the first to establish the absolute amounts of iron needed for growth and, from his work, it was then possible to investigate the consequences of iron deficiency and subsequently how iron was solubilized and transported into mycobacterial cells. Parallel with this work, was the discovery by Alan Snow, at ICI Ltd, UK, of the mycobactins. These are essential growth factors for Mycobacterium paratuberculosis and their role in iron binding was then pivotal to elucidating the main aspects of iron uptake. However, mycobactins, being wholly intracellular materials, were unable to act as external siderophores for the solubilization of iron; this role was then found to be carried out by the exochelins discovered by the author of this review. The exochelins were of two types: those from the non-pathogenic mycobacteria were water-soluble pentapeptides whereas those from pathogenic species were modifications of mycobactin and were then named as the carboxymycobactins. The interdependency of these materials and others is then unraveled in this review. The review focuses mainly on the research work carried out over the last century leaving the present work on iron uptake to be covered in other reviews in this monograph.

“Mycobacteria are nothing more than E. coli wrapped up in a fur coat”Frank Winder.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  PubMed  CAS  Google Scholar 

  2. Chipperfield JR, Ratledge C (2000) Salicylate is not a bacterial siderophore: a theoretical study. Biometals 13:165–168

    Article  PubMed  CAS  Google Scholar 

  3. Sauton A (1912) Sur la nutrition minerale du bacilli tuberculeux. CR Acad Sci (Paris) 155:860–861

    CAS  Google Scholar 

  4. Edson NL, Hunter GJE (1943) Respiration and nutritional requirements of certain members of the genus Mycobacterium. Biochem J 37:563–571

    PubMed  CAS  Google Scholar 

  5. Goth A (1945) The antitubercular activity of aspergillic acid and its probable mode of action. J Lab Clin Med 30:899–905

    CAS  Google Scholar 

  6. Turian G (1951) Action plasmogene du fer chez les Mycobacteries. Le bacilli de la fleole, indicateur du fer. Helv Chim Acta 34:917–920

    Article  CAS  Google Scholar 

  7. Winder F, Denneny J (1959) Effect of iron and zinc on nucleic acid and protein synthesis in Mycobacterium smegmatis. Nature 184:742–743

    Article  PubMed  CAS  Google Scholar 

  8. Winder FG, O’Hara C (1962) Effect of iron deficiency and of zinc deficiency on the composition of Mycobacterium smegmatis. Biochem J 82:98–102

    PubMed  CAS  Google Scholar 

  9. Winder FG, O’Hara C (1964) Effects of iron deficiency and of zinc deficiency on the activities of some enzymes in Mycobacterium smegmatis. Biochem J 90:122–126

    PubMed  CAS  Google Scholar 

  10. Donald C, Passey BI, Swaby RJ (1952) A comparison of methods for removing trace metals from microbiological media. J Gen Microbiol 7:211–220

    Article  PubMed  CAS  Google Scholar 

  11. Winder FG, O’Hara C (1966) Levels of iron and zinc in Mycobacterium smegmatis grown under conditions of trace metal limitation. Biochem J 100:38P

    CAS  Google Scholar 

  12. Winder FG, Coughlan MP (1969) A nucleoside triphosphate-dependent deoxyribonucleic acid-breakdown system in Mycobacterium smegmatis and the effect of iron limitation on the activity of this system. Biochem J 111:679–687

    PubMed  CAS  Google Scholar 

  13. Winder FG, Coughlan MP (1971) Comparison of the effects of carbon, nitrogen and iron limitation on the growth and on the RNA and DNA content of Mycobacterium smegmatis. Irish J Med Sci 140:16–25

    Article  PubMed  CAS  Google Scholar 

  14. Winder FG, McNulty MS (1970) Increased DNA polymerase activity accompanying decreased DNA content in iron-deficient Mycobacterium smegmatis. Biochim Biophys Acta 209:578–580

    Article  PubMed  CAS  Google Scholar 

  15. Winder FG, Lavin MF (1971) Partial purification and properties of a nucleoside triphosphate-dependent deoxyribonuclease from Mycobacterium smegmatis. Biochim Biophys Acta 247:542–561

    Article  PubMed  CAS  Google Scholar 

  16. Winder FG, Sastry PA (1971) The formation of a long-lived complex between an ATP-dependent deoxyribonuclease and DNA. FEBS Lett 17:27–30

    Article  PubMed  CAS  Google Scholar 

  17. Winder FG, Barber DS (1973) Effects of hydroxyurea, nalidixic acid and zinc limitation on DNA polymerase and ATP-dependent deoxyribonuclease activities of Mycobacterium smegmatis. J Gen Microbiol 76:189–196

    Article  PubMed  CAS  Google Scholar 

  18. Ehrenberg A, Reichard P (1972) Electron spin resonance of the iron-containing protein B2 from ribonucleotide reductase. J Biol Chem 247:3485–3488

    PubMed  CAS  Google Scholar 

  19. MacNaughton AW, Winder FG (1977) Increased DNA polymerase and ATP-dependent deoxyribonuclease activities following DNA damage in Mycobacterium smegmatis. Mol Gen Genet 150:301–308

    Article  PubMed  CAS  Google Scholar 

  20. McCready KA, Ratledge C (1978) Amounts of iron, haem and related compounds in Mycobacterium smegmatis grown in various concentrations of iron. Biochem Soc Trans 6:421–423

    PubMed  CAS  Google Scholar 

  21. McCready KA (1980) Studies on iron metabolism in Mycobacterium smegmatis and other mycobacteria. PhD thesis, University of Hull, UK

    Google Scholar 

  22. Twort FW, Ingram GLY (1912) A method for isolating and cultivating the Mycobacterium enteritidis chronicae pseudotuberculosae bovis, Johne, and some experiments on the preparation of a diagnostic vaccine for pseudo-tuberculosis enteritis of bovines. Proc R Soc Lond B Biol Sci 84:517–530

    Article  Google Scholar 

  23. Twort FW, Ingram GLY (1913) A monograph on Johne’s disease (enteritis chronicae pseudotuberculosa bovis). Baliere, Tindall and Cox

    Book  Google Scholar 

  24. Twort and Ingram (1914) Further experiments on the biology of Johne’s bacillus. Zentr Bakteriol Parasitenk Abt 1 Org 73:277–283

    Google Scholar 

  25. Johne HA, Frothingham L (1895) Ein eigentuemlicher Fall von Tuberculose beim Rind. Dtsch Ztschr Tiermed Pathol 21:438–454

    Google Scholar 

  26. Snow GA (1970) Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol Rev 34:99–125

    PubMed  CAS  Google Scholar 

  27. Francis J, Madinaveitia J, Macturk HM Snow GA (1949) Isolation from acid-fast bacteria of a growth-factor for Mycobacterium johnei and of a precursor of phthiocol. Nature 163:365–366

    Article  PubMed  CAS  Google Scholar 

  28. Francis J, Macturk HM, Madinaveitia J Snow GA (1953) Mycobactin, a growth factor for Mycobacterium johnei. I isolation from Mycobacterium phlei. Biochem J 55:596–607

    PubMed  CAS  Google Scholar 

  29. Wheater DWF, Snow GA (1966) Assay of the mycobactins by measurement of the growth of Mycobacterium johnei. Biochem J 100:47–49

    CAS  Google Scholar 

  30. Antoine AD, Morrison NE, Hanks JH (1964) Specificity of improved methods for mycobactin bioassay by Arthrobacter terregens. J Bacteriol 88:1672–1677

    PubMed  CAS  Google Scholar 

  31. Reich CV, Hanks JH (1964) Use of Arthrobacter terregens for bioassay of mycobactin. J Bacteriol 87:1317–1320

    PubMed  CAS  Google Scholar 

  32. Snow GA (1954a) Mycobactin. A growth factor for Mycobacterium johnei. II Degradation and identification of fragments. J Chem Soc 2588–2596

    Google Scholar 

  33. Snow GA (1954b) Mycobactin. A growth factor for Mycobacterium johnei. III Degradation and tentative structure. J Chem Soc 4080–4093

    Google Scholar 

  34. Snow GA (1961) An iron-containing growth factor from Mycobacterium tuberculosis. Biochem J 81:hn 4P

    Google Scholar 

  35. Snow GA (1965) The structure of mycobactin P, a growth factor for Mycobacterium johnei, and the significance of its iron complex. Biochem J 94:160–165

    PubMed  CAS  Google Scholar 

  36. Snow GA (1965) Isolation and structure of mycobactin T, a growth factor from Mycobacterium tuberculosis. Biochem J 94:166–175

    Google Scholar 

  37. Hough E, Rogers D (1784) The crystal structure of ferrimycobactin P, a growth factor for the mycobacteria. Biochem Biophys Res Commun 57:73–77

    Google Scholar 

  38. Brown KA, Ratledge C (1974) Iron transport in Mycobacterium smegmatis: ferrimycobactin reductase [NAD(P)H:ferrimycobactin oxido-reductase], the enzyme releasing iron from its carrier. FEBS Lett 53:262–266

    Article  Google Scholar 

  39. McCready KA, Ratledge C (1979) Ferrimycobactin reductase activity from Mycobacterium smegmatis. J Gen Microbiol 113:67–72

    Article  CAS  Google Scholar 

  40. Ratledge C (1971) Transport of iron by mycobactin in Mycobacterium smegmatis. Biochem Biophys Res Commun 45:856–862

    Article  PubMed  CAS  Google Scholar 

  41. Morrison NE (1965) Circumvention of the mycobactin requirement of Mycobacterium paratuberculosis. J Bacteriol 89:762–767

    PubMed  CAS  Google Scholar 

  42. Morrison NE (1995) Mycobacterium leprae: iron nutrition: bacterioferritin, mycobactin, exochelin and intracellular growth. Int J Lepr 63:86–91

    CAS  Google Scholar 

  43. White AJ, Snow GA (1969) Isolation of mycobactins from various mycobacteria. The properties of mycobactins S and H. Biochem J 111:785–792

    PubMed  CAS  Google Scholar 

  44. Snow GA, White AJ (1969) Chemical and biological properties of mycobactins isolated from various mycobacteria. Biochem J 115:1031–1045

    PubMed  CAS  Google Scholar 

  45. Snow GA (1969) Metal complexes of mycobactin P and of desferrisideramines. Biochem J 115:119–205

    Google Scholar 

  46. D’Arcy Hart P (1958) A mycobactin-containing liquid medium for the study of Mycobacterium johnei. J Pathol Bacteriol 76:205–210

    Article  Google Scholar 

  47. Lambrecht RS, Collins MT (1992) Mycobacterium paratuberculosis factors that influence mycobactin dependence. Diagn Microbiol Infect Dis 15:239–246

    Article  PubMed  CAS  Google Scholar 

  48. Barclay R, Ratledge C (1986) Participation of iron on the growth inhibition of pathogenic strains of Mycobacterium avium and M. paratuberculosis in serum. Zentralbl Bakteriol Mikrobiol Hyg (Ser A) 262:189–194

    CAS  Google Scholar 

  49. Patel PV, Ratledge C (1973) Isolation of lipid-soluble compounds that bind ferric ions from Nocardia species. Biochem Soc Trans 1:886–888

    CAS  Google Scholar 

  50. Ratledge C, Snow GA (1974) Isolation and structure of nocobactin NA, a lipid-soluble iron-binding compound from Nocardia asteroides. Biochem J 139:407–413

    PubMed  CAS  Google Scholar 

  51. Ratledge C, Patel PV (1976) Lipid-soluble, iron-binding compounds in Nocardia and related organisms. In: Goodfellow M, Brownell GH, Serrano JA (eds) The biology of the Nocardiae. Academic Press, London

    Google Scholar 

  52. Hall RM, Ratledge C (1982) A simple method for the production of mycobactin, the lipid-soluble siderophore from mycobacteria. FEMS Microbiol Lett 15:133–136

    Article  CAS  Google Scholar 

  53. Ratledge C, Ewing DE (1978) The separation of the mycobactins from Mycobacterium smegmatis by using high-pressure liquid chromatography. Biochem J 175:853–857

    PubMed  CAS  Google Scholar 

  54. Bosne S, Papa F, Clavel-Seres S, Rastogi N (1993) A simple and reliable EDDA method for mycobactin production in mycobacteria: optimal conditions and use in mycobacterial speciation. Curr Microbiol 26:353–358

    Article  CAS  Google Scholar 

  55. Bosne S, Levy-Frebault VV (1992) Mycobactin analysis as an aid for the identification of Mycobacterium fortuitum and Mycobacterium chelonae subspecies. J Clin Microbiol 30:1225–1231

    PubMed  CAS  Google Scholar 

  56. Hall RM, Ratledge C (1984) Mycobactins as chemotaxonomic characters for some rapidly growing mycobacteria. J Gen Microbiol 130:1883–1892

    PubMed  CAS  Google Scholar 

  57. Leite CQF, Barreto AMW, Leite SRA (1995) Thin-layer chromatography of mycobactins and mycolic acids for the identification of clinical mycobacteria. Rev Microbiol 26:192–196

    CAS  Google Scholar 

  58. Barclay R, Furst V, Smith I (1992) A simple and rapid method for the detection and identification of mycobacteria using mycobactin. J Med Microbiol 37:286–290

    Article  PubMed  CAS  Google Scholar 

  59. Hall RM, Ratledge C (1985) Equivalance of mycobactins from Mycobacterium senegalense, Mycobacterium farcinogenes and Mycobacterium fortuitum. J Gen Microbiol 131:1691–1996

    PubMed  CAS  Google Scholar 

  60. Hall RM, Ratledge C (1985) Mycobactins in the classification and identification of armadillo-derived mycobacteria. FEMS Microbiol Lett 28:243–247

    Article  CAS  Google Scholar 

  61. Barclay RM, Ratledge C (1983) Iron-binding compounds of Mycobacterium avium, M. intracellulare, M. scrofulaceum, and mycobactin-dependent M. paratuberculosis and M. avium. J Bacteriol 153:1138–1146

    PubMed  CAS  Google Scholar 

  62. Matthews PRJ, McDiarmid A, Collins P, Brown A (1977) The dependence of some strains of Mycobacterium avium on mycobactin for initial and subsequent growth. J Med Microbiol 11:53–57

    Article  Google Scholar 

  63. Ratledge C, McCready KA (1977) Mycobactins from Mycobacterium avium. Int J Syst Bacteriol 27:288–289

    Article  CAS  Google Scholar 

  64. Barclay R, Ewing DF, Ratledge C (1985) Isolation, identification, and structural analysis of the mycobactins of Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum and Mycobacterium paratuberculosis. J Bacteriol 164:896–903

    PubMed  CAS  Google Scholar 

  65. Thorel MF, Krichevsky M, Levy-Frebault VV (1990) Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov. Int J Syst Bacteriol 40:254–260

    Article  PubMed  CAS  Google Scholar 

  66. Merkal RS, McCullough WG (1982) A new mycobactin, mycobactin J from Mycobacterium paratuberculosis. Curr Microbiol 7:333–335

    Article  Google Scholar 

  67. McCullough WG, Merkal RS (1982) Structure of mycobactin. J Curr Microbiol 7:337–341

    Article  CAS  Google Scholar 

  68. Schwartz BD, De Voss JJ (2001) Structure and absolute configuration of mycobactin. J Tetrahedron Lett 42:3653–3655

    Article  CAS  Google Scholar 

  69. Collins DM, De Lisle GW (1986) Restriction endonuclease analysis of various strains of Mycobacterium paratuberculosis isolated from cattle. Am J Vet Res 10:2226–2228

    Google Scholar 

  70. Whipple DL, Le Febvre RB, Andrews RE et al (1987) Isolation and analysis of restriction endonuclease digestive patterns of chromosomal DNA from Mycobacterium paratuberculosis and other Mycobacterium species. J Clin Microbiol 25:1511–1515

    PubMed  CAS  Google Scholar 

  71. Hall RM, Ratledge C (1986) Distribution and application of mycobactins for the characterization of species within the genus Rhodococcus. J Gen Microbiol 132:853–856

    PubMed  CAS  Google Scholar 

  72. Dhungana S, Michalczyk R, Boukhalfa H et al (2007) Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. Biometals 20:853–867

    Article  PubMed  CAS  Google Scholar 

  73. Ratledge C, Winder FG (1962) The accumulation of salicylic acid by mycobacteria during growth on an iron-deficient medium. Biochem J 84:501–506

    PubMed  CAS  Google Scholar 

  74. Ratledge C, Patel PV, Mundy J (1982) Iron transport in Mycobacterium smegmatis: the locaction of mycobactin by electron microscopy. J Gen Microbiol 128:1559–1565

    PubMed  CAS  Google Scholar 

  75. Kochan I, Pellis NR, Golden CA (1971) Mechanism of tuberculostasis in mammalian serum. Infect Immun 3:553–558

    PubMed  CAS  Google Scholar 

  76. Kochan I, Cahall DL, Golden CA (1971) Employment of tuberculostasis in serum-agar medium for the study of production and activity of mycobactin. Infect Immun 4:130–137

    PubMed  CAS  Google Scholar 

  77. Golden CA, Kochan I, Spriggs DR (1974) Role of mycobactin in the growth and virulence of tubercle bacilli. Infect Immun 9:34–40

    PubMed  CAS  Google Scholar 

  78. Ratledge C, Marshall BJ (1972) Iron transport in Mycobacterium smegmatis: the role of mycobactin. Biochim Biophys Acta 279:58–74

    Article  PubMed  CAS  Google Scholar 

  79. Ratledge C, Macham LP, Brown KA et al (1974) Iron transport in Mycobacterium smegmatis: a restricted role for salicylic acid in the extracellular environment. Biochim Biophys Acta 372:39–51

    Article  PubMed  CAS  Google Scholar 

  80. Brown KA, Ratledge C (1972) Inhibition of mycobactin formation in Mycobacterium smegmatis by p-aminosalicylate: a new proposal for the mode of action of p-aminosalicylate. Am Rev Respir Dis 106:774–776

    PubMed  Google Scholar 

  81. Brown KA, Ratledge C (1975) The effect of p-aminosalicylic acid on iron transport and assimilation in mycobacteria. Biochim Biophys Acta 385:207–220

    Article  PubMed  CAS  Google Scholar 

  82. Adilakshmi T, Ayling PD, Ratledge C (2000) Mutational analysis of a role for salicylic acid in iron metabolism of Mycobacterium smegmatis. J Bacteriol 182:264–271

    Article  PubMed  CAS  Google Scholar 

  83. Nagachar N, Ratledge C (2010) Roles of trpE2, entC and entD in salicylic acid biosynthesis in Mycobacterium smegmatis. FEMS Microbiol Lett 308:159–165

    PubMed  CAS  Google Scholar 

  84. Nagachar N, Ratledge C (2010) Knocking out salicylate biosynthesis genes in Mycobacterium smegmatis induces hypersensitivity to p-aminosalicylate (PAS). FEMS Microbiol Lett 311:193–199

    Article  PubMed  CAS  Google Scholar 

  85. Brodie AF (1967) Microbial phosphorylating preparations: Mycobacterium. Methods Enzymol 10:157–169

    Article  CAS  Google Scholar 

  86. Bernheim F (1951) Metabolism of aromatic compounds by mycobacteria. Adv Tuberc Res 5:5–39

    CAS  Google Scholar 

  87. Brodie AF, Gray CT (1957) Bacterial particles in oxidative phosphorylation. Science 125:534–537

    Article  PubMed  CAS  Google Scholar 

  88. Macham LP, Ratledge C (1975) A new group of water-soluble iron-binding compounds from mycobacteria: the exochelins. J Gen Microbiol 89:379–382

    Article  PubMed  CAS  Google Scholar 

  89. Macham LP, Stephenson MC, Ratledge C (1977) Iron transport in Mycobacterium smegmatis: the isolation, purification and function of exochelin MS. J Gen Microbiol 101:41–49

    Article  CAS  Google Scholar 

  90. Stephenson MC, Ratledge C (1979) Iron transport in Mycobacterium smegmatis: uptake of iron from ferriexochelin. J Gen Microbiol 110:193–202

    Article  PubMed  CAS  Google Scholar 

  91. Stephenson MC, Ratledge C (1980) Specificity of exochelins for iron transport in three species of mycobacteria. J Gen Microbiol 116:521–523

    PubMed  CAS  Google Scholar 

  92. Hall RM, Ratledge C (1987) Exochelin-mediated iron acquisition by the leprosy bacillus, Mycobacterium leprae. J Gen Microbiol 133:193–199

    PubMed  CAS  Google Scholar 

  93. Messenger AJM, Hall RM, Ratledge C (1986) Iron uptake processes in Mycobacterium vaccae R877R, a mycobacterium lacking mycobactin. J Gen Microbiol 132:845–852

    PubMed  CAS  Google Scholar 

  94. Sharman GJ, Williams DH, Ewing DF et al (1995) Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. Biochem J 305:187–196

    PubMed  CAS  Google Scholar 

  95. Sharman GJ, Williams DH, Ewing DF et al (1995) Determination of the structure of exochelin MN, the extracellular siderophore from Mycobacterium neoaurum. Chem Biol 2:553–561

    Article  PubMed  CAS  Google Scholar 

  96. Hall RM, Wheeler PR, Ratledge C (1983) Exochelin-mediated iron uptake into Mycobacterium leprae. Int J Lepr 51:490–494

    CAS  Google Scholar 

  97. Goodfellow M, Wayne LG (1982) Taxonomy and nomenclature. In: Ratledge C, Stanford J (eds) The biology of the mycobacteria, vol 1. Academic Press, London

    Google Scholar 

  98. Stanford JL, Rook GAW (1976) Taxonomic studies on the leprosy bacillus. Int J Lepr 44:216–221

    CAS  Google Scholar 

  99. Barclay R, Ratledge C (1988) Mycobactins and exochelins of Mycobacterium tuberculosis, M. bovis, M. africanum and other related species. J Gen Microbiol 134:771–776

    PubMed  CAS  Google Scholar 

  100. Macham LP, Ratledge C, Nocton JC (1975) Extracellular iron acquisition by mycobacteria: role of the exochelins and evidence against the participation of mycobactin. Infect Immun 12:1242–1251

    PubMed  CAS  Google Scholar 

  101. Lane SJ, Marshall PS, Upton RJ et al (1995) Novel extracellular mycobactins, the carboxymycobactins from M. avium. Tetrahedron Lett 36:4129–4132

    Article  CAS  Google Scholar 

  102. Gobin J, Moore CH, Reeve JR, Wong DK et al (1995) Iron acquisition by Mycobacterium tuberculosis: isolation and characterization of a family of iron-binding exochelins. Proc Nat Acad Sci USA 92:5189–5193

    Article  PubMed  CAS  Google Scholar 

  103. Wong DK, Gobin J, Horwitz MA, Gibson BW (1996) Characterization of exochelins from Mycobacterium avium: evidence for saturated and unsaturated and for acid and ester forms. J Bacteriol 178:6394–6398

    PubMed  CAS  Google Scholar 

  104. Lane SJ, Marshall PS, Upton RJ, Ratledge C (1998) Isolation and characterization of carboxymycobactins as the second extracellular siderophores in Mycobacterium smegmatis. Biometals 11:13–20

    Article  CAS  Google Scholar 

  105. Homuth M, Valentin-Weigand P, Rohle M et al (1998) Identification and characterization of a novel extracellular ferric reductase from Mycobacterium paratuberculosis. Infect Immun 66:710–716

    PubMed  CAS  Google Scholar 

  106. Lambrecht RS, Collins MT (1993) Inability to detect mycobactin in mycobacteria-infected tissues suggests and alternative iron acquisition mechanism by mycobacteria in vivo. Microb Pathog 14:229–238

    Article  PubMed  CAS  Google Scholar 

  107. Emmanuel FX, Seagar AL, Doig C et al (2007) Human and animal infections with Mycobacterium microti, Scotland. Emerg Infect Dis 13:1924–1927

    Article  Google Scholar 

  108. Ratledge C, Ewing M (1996) The occurrence of carboxymycobactin, the siderophore of pathogenic mycobacteria, as a second extracellular siderophore in Mycobacterium smegmatis. Microbiology 142:2207–2212

    Article  PubMed  CAS  Google Scholar 

  109. Brooks BW, Yong NM, Watson DC et al (1991) Mycobacterium paratuberculosis antigen D: characterization and evidence that it is bacterioferritin. J Clin Microbiol 29:1652–1658

    PubMed  CAS  Google Scholar 

  110. Inglis NF, Stevenson K, Hosie AH et al (1994) Complete sequence of the gene encoding the bacterioferritin subunit of Mycobacterium avium subspecies silvaticum. Gene 150:205–206

    Article  PubMed  CAS  Google Scholar 

  111. Pessolani MCV, Smith DR, Rivoire B et al (1994) Purification, characterization, gene sequence, and significance of a bacterioferritin from Mycobacterium leprae. J Exp Med 180:319–327

    Article  PubMed  CAS  Google Scholar 

  112. Matzanke BF, Bohnke R, Mollmann U et al (1997) Iron uptake and intracellular metal transfer in mycobacteria mediated by xenosiderophores. Biometals 10:193–203

    Article  PubMed  CAS  Google Scholar 

  113. Ratledge C (1999) Iron metabolism. In: Ratledge C, Dale J (eds) Mycobacteria: molecular biology and virulence, Blackwell, Oxford, pp 260–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Ratledge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Ratledge, C. (2013). A History of Iron Metabolism in the Mycobacteria. In: Byers, B. (eds) Iron Acquisition by the Genus Mycobacterium. SpringerBriefs in Molecular Science(). Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00303-0_2

Download citation

Publish with us

Policies and ethics