Skip to main content

Berezin’s Coherent States, Symbols and Transform for Compact Kähler Manifolds

  • Conference paper
  • First Online:
Book cover Geometric Methods in Physics

Part of the book series: Trends in Mathematics ((TM))

  • 1328 Accesses

Abstract

We review coherent state techniques for general quantizable compact Kähler manifolds. Discussed are co- and contravariant Berezin symbols, Berezin-Toeplitz quantization, the Berezin transform, and related natural deformation quantizations (star products). These are the Berezin-Toeplitz, the Berezin, and the Geometric Quantization star product. All three star products exist in this settinga nd are uniquely defined. They are different, but equivalent. The equivalence transformation is given. Results on the Berezin transform are used in an essential manner.

Mathematics Subject Classification (2010). Primary 53D55; Secondary 32J27, 47B35, 53D50.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S.T., Antoine, J.P., and Gazeau, J.P., Coherent states, wavelets and their generalizations. Springer, New York, 2000.

    Google Scholar 

  2. Perelomov, A., Generalized coherent states and their applications. Springer, Berlin, 1986.

    Google Scholar 

  3. Berezin, F.A., Covariant and contravariant symbols of operators. Math. USSR-Izv. 5 (1972), 1117–1151.

    Article  Google Scholar 

  4. Berezin, F.A., Quantization in complex bounded domains. Soviet Math. Dokl. 14 (1973), 1209–1213.

    MATH  Google Scholar 

  5. Berezin, F.A., Quantization. Math. USSR-Izv. 8 (1974), 1109–1165.

    Article  Google Scholar 

  6. Berezin, F.A., Quantization in complex symmetric spaces. Math. USSR-Izv. 9 (1975), 341–379.

    Article  Google Scholar 

  7. Berezin, F.A., General concept of quantization. Comm. Math. Phys 40 (1975), 153–174.

    Article  MathSciNet  MATH  Google Scholar 

  8. Rawnsley, J.H., Coherent states and Kähler manifolds. Quart. J. Math. Oxford Ser.(2) 28 (1977), 403–415.

    Google Scholar 

  9. Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds I: Geometric interpretation of Berezins quantization. JGP 7 (1990), 45–62.

    MathSciNet  MATH  Google Scholar 

  10. Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds II. Trans. Amer. Math. Soc. 337 (1993), 73–98.

    MathSciNet  MATH  Google Scholar 

  11. Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds III. Lett. Math. Phys. 30 (1994), 291–305.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler manifolds IV. Lett. Math. Phys. 34 (1995), 159–168.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bordemann, M., Meinrenken, E., and Schlichenmaier, M., Toeplitz quantization of Kähler manifolds and gl(n), n→∞ limits. Commun. Math. Phys. 165 (1994), 281–296.

    Google Scholar 

  14. Karabegov, A.V., Schlichenmaier, M., Identification of Berezin-Toeplitz deformation quantization. J. reine ang ew. Math. 540 (2001), 49–76

    MathSciNet  MATH  Google Scholar 

  15. Schlichenmaier, M., Berezin-Toeplitz quantization of compact Kähler manifolds. in: Quantization, Coherent States and Poisson Structures, Proc. XIV’th Workshop on Geometric Methods in Physics (Białlowieża, Poland, 9–15 July 1995) (A, Strasburger, S.T. Ali, J.-P. Antoine, J.-P. Gazeau, and A, Odzijewicz, eds.), Polish Scientific Publisher PWN, 1998, q-alg/9601016, pp, 101–115.

    Google Scholar 

  16. Schlichenmaier, M., Berezin-Toeplitz quantization and Berezin symbols for arbitrary compact Kähler manifolds. in Proceedings of the XVIIth workshop on geometric methods in physics, Białlowieża, Poland, July 3–10, 1998 (eds. Schlichenmaier, et al.), (math.QA/9902066), Warsaw University Press, 45–56.

    Google Scholar 

  17. Schlichenmaier, M., Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, (in) the Proceedings of the Conference Moshe Flato 1999, Vol. II (eds. G. Dito, and D. Sternheimer), Kluwer 2000, 289–306, math.QA/9910137.

    Google Scholar 

  18. Schlichenmaier, M., Berezin-Toeplitz quantization and Berezin transform. (in) Long time behaviour of classical and quantum systems. Proc. of the Bologna APTEX Int. Conf. 13–17 September 1999, eds. S. Graffi, A. Martinez, World-Scientific, 2001, 271–287.

    Google Scholar 

  19. Schlichenmaier, M., Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. in Math. Phys. volume 2010, doi:10.1155/2010/927280.

    Google Scholar 

  20. Schlichenmaier, M. Berezin-Toeplitz quantization for compact Kähler manifolds. An introduction. Travaux Math. 19 (2011), 97–124.

    MathSciNet  Google Scholar 

  21. Tuynman, G.M., Generalized Bergman kernels and geometric quantization. J.Math. Phys. 28, (1987) 573–583.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Deformation theory and quantization, Part I. Lett. Math. Phys. 1 (1977), 521–530: Deformation theory and quantization, Part II and III. Ann. Phys. 111 (1978), 61–110, 111–151.

    Google Scholar 

  23. Karabegov, A.V., Deformation quantization with separation of variables on a Kähler manifold, Commun. Math. Phys. 180 (1996), 745–755.

    Article  MathSciNet  MATH  Google Scholar 

  24. Bordemann, M., and Waldmann, St., A Fedosov star product of the Wick type for Kähler manifolds. Lett. Math. Phys. 41 (1997), 243–253.

    Google Scholar 

  25. Schlichenmaier, M., Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik: Berezin-Toeplitz-Quantisierung und globale Algebren der zweidimensionalen konformen Feldtheorie. Habilitationsschrift Universität Mannheim, 1996.

    Google Scholar 

  26. Berceanu, St., and Schlichenmaier, M., Coherent state embeddings, polar divisors and Cauchy formulas. JGP 34 (2000), 336–358.

    Google Scholar 

  27. Boutet de Monvel, L., and Guillemin, V, The spectral theory of Toeplitz operators. Ann. Math. Studies, Nr. 99, Princeton University Press, Princeton, 1981.

    Google Scholar 

  28. Englis, M., Asymptotics of the Berezin transform and quantization on planar domains. Duke Math. J. 79 (1995), 57–76.

    Article  MathSciNet  MATH  Google Scholar 

  29. Karabegov, A.V., On Fedosovs approach to deformation quantization with separation of variables (in) the Proceedings of the Conference Moshe Flato 1999, Vol. II (eds. G. Dito, and D. Sternheimer), Kluwer 2000, 167–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schlichenmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Schlichenmaier, M. (2013). Berezin’s Coherent States, Symbols and Transform for Compact Kähler Manifolds. In: Kielanowski, P., Ali, S., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds) Geometric Methods in Physics. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0448-6_9

Download citation

Publish with us

Policies and ethics