Skip to main content

Proteases and Fibrosis

  • Chapter
  • First Online:
Proteases and Their Receptors in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 819 Accesses

Abstract

Protein turnover, orchestrated by a large array of proteases, protein complexes, and organelles consumes one-fifth of the human energy. In many diseases this homeostasis is lost resulting in loss of tissue function. One such group of diseases are the fibrotic disorders in which there is progressive fibroproliferation and extracellular matrix deposition. The causes of these diseases are sometimes identified, but often they are cryptic. In any case it is clear that there are shared pathways and processes leading to fibrosis in different tissues such as liver, lung, and kidney. There are also intense efforts to discover ways to inhibit the pathways that lead to fibrosis. Proteases of all classes are known to play roles in fibrosis. The matrix metalloproteases (MMPs) and their inhibitors (the tissue inhibitors of metalloproteinases, TIMPS) can degrade all extracellular matrix components and are thought to be central to pathogenesis. However, cysteine and serine proteases (including caspases, cathepsins, coagulation cascade proteases, and mast cell proteases) are also thought to regulate key processes and cell functions in fibrosis, including extracellular matrix gene expression, cell proliferation, cell apoptosis, epithelial mesenchymal transduction, and fibrocyte recruitment. The multiple pathways and range of proteases involved clearly provides challenges for therapy but it is not surprising that regulation of protease activity and the cell functions they control are being explored as potential targets to treat fibrotic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoenheimer R (1942) The dynamic state of body constituents. Harvard University Press, Cambridge, MA

    Google Scholar 

  2. Asokananthan N, Graham PT, Stewart DJ, Bakker AJ, Eidne KA, Thompson PJ, Stewart GA (2002) House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: The cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol 169:4572–4578

    PubMed  CAS  Google Scholar 

  3. Maher TM, Wells AU, Laurent GJ (2007) Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? Eur Respir J 30(5):835–839

    PubMed  CAS  Google Scholar 

  4. Laurent GJ (1987) Dynamic State of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252(1 Pt 1):C1–C9

    PubMed  CAS  Google Scholar 

  5. Limb GA, Matter K, Murphy G, Cambrey AD, Bishop PN, Morris GE, Khaw PT (2005) Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Pathol 166(5):1555–1563

    PubMed  CAS  Google Scholar 

  6. Merkle M, Ribeiro A, Sauter M, Ladurner R, Mussack T, Sitter T, Wörnle M (2010) Effect of activation of viral receptors on the gelatinases MMP-2 and MMP-9 in human mesothelial cells. Matrix Biol 29(3):202–208

    PubMed  CAS  Google Scholar 

  7. Kim JH, Suk MH, Yoon DW, Lee SH, Hur GY, Jung KH et al (2006) Inhibition of matrix metalloproteinase-9 prevents neutrophilic inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291(4):L580–L587

    PubMed  CAS  Google Scholar 

  8. Desai LP, Aryal AM, Ceacareanu B, Hassid A, Waters CM (2004) Rhoa and rac1 are both required for efficient wound closure of airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 287(6):L1134–L1144

    PubMed  CAS  Google Scholar 

  9. Planus E, Galiacy S, Matthay M, Laurent V, Gavrilovic J, Murphy G et al (1999) Role of collagenase in mediating in vitro alveolar epithelial wound repair. J Cell Sci 112(Pt 2):243–252

    PubMed  CAS  Google Scholar 

  10. McGuire JK, Li Q, Parks WC (2003) Matrilysin (matrix metalloproteinase-7) mediates e-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 162(6):1831–1843

    PubMed  CAS  Google Scholar 

  11. Selman M, Pardo A, Barrera L, Estrada A, Watson SR, Wilson K et al (2006) Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med 173(2):188–198

    PubMed  CAS  Google Scholar 

  12. Iredale JP, Murphy G, Hembry RM, Friedman SL, Arthur MJ (1992) Human hepatic lipocytes synthesize tissue inhibitor of metalloproteinases-1.Implications for regulation of matrix degradation in the liver. J Clin Invest 90(1):282–287

    PubMed  CAS  Google Scholar 

  13. Ramachandran P, Iredale JP (2009) Reversibility of liver fibrosis. Ann Hepatol 8(4):283–291

    PubMed  Google Scholar 

  14. Wang H, Zhang Y, Heuckeroth RO (2007) PAI-1 deficiency reduces liver fibrosis after bile duct ligation in mice through activation of tpa. FEBS Lett 581(16):3098–3104

    PubMed  CAS  Google Scholar 

  15. Manoury B, Caulet-Maugendre S, Guénon I, Lagente V, Boichot E (2006) TIMP-1 is a key factor of fibrogenic response to bleomycin in mouse lung. Int J Immunopathol Pharmacol 19(3):471–487

    PubMed  CAS  Google Scholar 

  16. Selman M, Ruiz V, Cabrera S, Segura L, Ramírez R, Barrios R, Pardo A (2000) TIMP-1, -2, -3, and −4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol 279(3):L562–L574

    PubMed  CAS  Google Scholar 

  17. Rosas IO, Richards TJ, Konishi K, Zhang Y, Gibson K, Lokshin AE et al (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5(4):e93

    PubMed  Google Scholar 

  18. Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A et al (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci USA 99(9):6292–6297

    PubMed  CAS  Google Scholar 

  19. Yu WH, Woessner JF, McNeish JD, Stamenkovic I (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and erbb4 and regulates female reproductive organ remodeling. Genes Dev 16(3):307–323

    PubMed  CAS  Google Scholar 

  20. Arendt E, Ueberham U, Bittner R, Gebhardt R, Ueberham E (2005) Enhanced matrix degradation after withdrawal of tgf-beta1 triggers hepatocytes from apoptosis to proliferation and regeneration. Cell Prolif 38(5):287–299

    PubMed  CAS  Google Scholar 

  21. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE et al (2005) Rac1B and reactive oxygen species mediate mmp-3-induced EMT and genomic instability. Nature 436(7047):123–127

    PubMed  CAS  Google Scholar 

  22. Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A et al (2002) Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem 277(46):44061–44067

    PubMed  CAS  Google Scholar 

  23. Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z (2005) Tgf-Beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56

    PubMed  Google Scholar 

  24. Cheng S, Lovett DH (2003) Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 162(6):1937–1949

    PubMed  CAS  Google Scholar 

  25. Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS et al (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12(3):317–323

    PubMed  CAS  Google Scholar 

  26. Nunnari G, Vancheri C, Gilli E, Migliore S, Palermo F, La Rosa C et al (2010) Circulating fibrocytes as a marker of liver fibrosis in chronic hepatitis C. Front Biosci (Elite Ed) 2:1241–1245

    Google Scholar 

  27. Sakai N, Furuichi K, Shinozaki Y, Yamauchi H, Toyama T, Kitajima S et al (2010) Fibrocytes are involved in the pathogenesis of human chronic kidney disease. Hum Pathol 41(5):672–678

    PubMed  CAS  Google Scholar 

  28. Keeley EC, Mehrad B, Strieter RM (2010) Fibrocytes: Bringing new insights into mechanisms of inflammation and fibrosis. Int J Biochem Cell Biol 42(4):535–542

    PubMed  CAS  Google Scholar 

  29. Garcia de Alba C, Becerril C, Reyes S, Selman M, Pardo A (2010) MMP-8 is a central player in fibrocytes transmigration. Am J Respir Crit Care Med 181(1_MeetingAbstracts):A5270

    Google Scholar 

  30. Deli G, Jin CH, Mu R, Yang S, Liang Y, Chen D, Makuuchi M (2005) Immunohistochemical assessment of angiogenesis in hepatocellular carcinoma and surrounding cirrhotic liver tissues. World J Gastroenterol 11(7):960–963

    PubMed  Google Scholar 

  31. Turner-Warwick M (1963) Precapillary systemic-pulmonary anastomoses. Thorax 18:225–237

    PubMed  CAS  Google Scholar 

  32. Yamashita M, Yamauchi K, Chiba R, Iwama N, Date F, Shibata N et al (2009) The definition of fibrogenic processes in fibroblastic foci of idiopathic pulmonary fibrosis based on morphometric quantification of extracellular matrices. Hum Pathol 40(9):1278–1287

    PubMed  CAS  Google Scholar 

  33. Strieter RM, Gomperts BN, Keane MP (2007) The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 117(3):549–556

    PubMed  CAS  Google Scholar 

  34. Huo N, Ichikawa Y, Kamiyama M, Ishikawa T, Hamaguchi Y, Hasegawa S et al (2002) MMP-7 (matrilysin) accelerated growth of human umbilical vein endothelial cells. Cancer Lett 177(1):95–100

    PubMed  CAS  Google Scholar 

  35. Keane MP, Strieter RM, Lynch JP, Belperio JA (2006) Inflammation and angiogenesis in fibrotic lung disease. Semin Respir Crit Care Med 27(6):589–599

    PubMed  Google Scholar 

  36. Nishizuka I, Ichikawa Y, Ishikawa T, Kamiyama M, Hasegawa S, Momiyama N et al (2001) Matrilysin stimulates DNA synthesis of cultured vascular endothelial cells and induces angiogenesis in vivo. Cancer Lett 173(2):175–182

    PubMed  CAS  Google Scholar 

  37. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    PubMed  CAS  Google Scholar 

  38. Dallas SL, Rosser JL, Mundy GR, Bonewald LF (2002) Proteolysis of latent transforming growth factor-beta (tgf-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of tgf-beta from bone matrix. J Biol Chem 277(24):21352–21360

    PubMed  CAS  Google Scholar 

  39. Ishikawa F, Miyoshi H, Nose K, Shibanuma M (2009) Transcriptional induction of MMP-10 by TGF-[beta], mediated by activation of MEF2A and downregulation of class iia hdacs. Oncogene 29(6):909–919

    PubMed  Google Scholar 

  40. Murray DB, Levick SP, Brower GL, Janicki JS (2010) Inhibition of matrix metalloproteinase activity prevents increases in myocardial tumor necrosis factor-alpha. J Mol Cell Cardiol 49(2):245–250

    PubMed  CAS  Google Scholar 

  41. Zhao MQ, Stoler MH, Liu AN, Wei B, Soguero C, Hahn YS, Enelow RI (2000) Alveolar epithelial cell chemokine expression triggered by antigen-specific cytolytic CD8(+) T cell recognition. J Clin Invest 106(6):R49–R58

    PubMed  CAS  Google Scholar 

  42. Ortiz LA, Lasky J, Hamilton RF, Holian A, Hoyle GW, Banks W et al (1998) Expression of TNF and the necessity of TNF receptors in bleomycin-induced lung injury in mice. Exp Lung Res 24(6):721–743

    PubMed  CAS  Google Scholar 

  43. Oikonomou N, Harokopos V, Zalevsky J, Valavanis C, Kotanidou A, Szymkowski DE et al (2006) Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS One 1:e108

    PubMed  Google Scholar 

  44. Black RA (2004) TIMP3 checks inflammation. Nat Genet 36(9):934–935

    PubMed  CAS  Google Scholar 

  45. Lee CW, Lin CC, Lin WN, Liang KC, Luo SF, Wu CB et al (2007) Tnf-Alpha induces MMP-9 expression via activation of src/EGFR, PDGFR/PI3K/akt cascade and promotion of nf-kappab/p300 binding in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 292(3):L799–L812

    PubMed  CAS  Google Scholar 

  46. Coppock HA, White A, Aplin JD, Westwood M (2004) Matrix metalloprotease-3 and -9 proteolyze insulin-like growth factor-binding protein-1. Biol Reprod 71(2):438–443

    PubMed  CAS  Google Scholar 

  47. Pilewski JM, Liu L, Henry AC, Knauer AV, Feghali-Bostwick CA (2005) Insulin-Like growth factor binding proteins 3 and 5 are overexpressed in idiopathic pulmonary fibrosis and contribute to extracellular matrix deposition. Am J Pathol 166(2):399–407

    PubMed  CAS  Google Scholar 

  48. Kisseleva T, Brenner DA (2007) Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol 22(Suppl 1):S73–S78

    PubMed  CAS  Google Scholar 

  49. Voeghtly LM, Kaminski N, Oury TD (2009) MMP activation peptide detection in biological samples as a diagnostic marker of idiopathic pulmonary fibrosis. FASEB J 23(1_MeetingAbstracts):572.11

    Google Scholar 

  50. Roderfeld M, Weiskirchen R, Wagner S, Berres ML, Henkel C, Grötzinger J et al (2006) Inhibition of hepatic fibrogenesis by matrix metalloproteinase-9 mutants in mice. FASEB J 20(3):444–454

    PubMed  CAS  Google Scholar 

  51. de Meijer VE, Sverdlov DY, Popov Y, Le HD, Meisel JA, Nosé V et al (2010) Broad-spectrum matrix metalloproteinase inhibition curbs inflammation and liver injury but aggravates experimental liver fibrosis in mice. PLoS One 5(6):e11256

    PubMed  Google Scholar 

  52. Maher TM (2019) Pirfenidone in idiopathic pulmonary fibrosis. Drugs Today 46(7):432–482

    Google Scholar 

  53. Li X, Filippatos G, Uhal BD (2004) Apoptosis in lung injury and remodelling. J Appl Physiol 97(4):1535–1542

    PubMed  CAS  Google Scholar 

  54. Moodley YP, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA (2003) Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lung. Am J Respir Cell Mol Biol 29(4):490–498

    PubMed  CAS  Google Scholar 

  55. Maher TM, Bottoms SE, Mercer PF, Thorley AJ, Nicholson AG, Laurent GJ, Tetley TD, Chambers RC, McAnulty RJ (2010) Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 182(1):73–82

    PubMed  CAS  Google Scholar 

  56. Kuwano K, Maeyama T, Hagimoto N, Kawasaki M, Matsuba T, Yoshimi M, Inoshima I, Yoshida K, Hara N (2001) Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 280(2):L316–L325

    PubMed  CAS  Google Scholar 

  57. Witek RP, Karaca FG, Syn WK, Pereira TA, Agboola KM, Omenetti A, Jung Y, Teaberry V, Choi SS, Guy CD, Pollard J, Charlton P, Diehl AM (2009) Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50(5):1421–1430

    PubMed  CAS  Google Scholar 

  58. Canbay A, Baskin-Bey E, Bronk SF, Gores GJ (2004) The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther 308(3):1191–1196

    PubMed  CAS  Google Scholar 

  59. Pockros PJ, Shiffman ML, McHutchison JG, Gish RG, Afdhal NH, Makhviladze M, Huyghe M, Hecht D, Oltersdorf T, Shapiro DA (2007) Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepathology 46(2):324–329

    CAS  Google Scholar 

  60. Brix K, Mayer K, Jordans S (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90(2):194–207

    PubMed  CAS  Google Scholar 

  61. Bühling F, Brasch F, Hartig R, Yasuda Y, Saftig P, Brömme D, Welte T (2004) Pivotal role of cathepsin K in lung fibrosis. Am J Pathol 164(6):2203–2216

    PubMed  Google Scholar 

  62. Lecaille F, Brömme D (2002) Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 102(12):4459–4488

    PubMed  CAS  Google Scholar 

  63. Tang PS, Seth R, Liu M (2008) Acute lung injury and cell death: how many ways can cells die? Am J Physiol Lung Cell Mol Physiol 294(4):L632–L641

    PubMed  CAS  Google Scholar 

  64. Lecaille F, Lalmanach G (2008) Biochemical properties and regulation of cathepsin K activity. Biochimie 90(2):208–226

    PubMed  CAS  Google Scholar 

  65. Bühling F, Gerber A, Krüger S, Weber E, Brömme D, Roessner A, Ansorge S, Welte T, Röcken C (2001) Cathepsin K – a marker of macrophage differentiation? J Pathol 195(3):375–382

    PubMed  Google Scholar 

  66. van den Brûle S, Bühling F, Lison D, Huaux F (2005) Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGF-beta. Respir Res 6:84

    PubMed  Google Scholar 

  67. Srivastava M, Kiviranta R, Morko J, Hoymann HG, Länger F, Buhling F, Welte T, Maus UA (2008) Overexpression of cathepsin K in mice decreases collagen deposition and lung resistance in response to bleomycin-induced pulmonary fibrosis. Respir Res 9:54

    PubMed  Google Scholar 

  68. Canbay A, Higuchi H, Feldstein A, Bronk SF, Rydzewski R, Taniai M, Gores GJ (2003) Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. J Clin Invest 112(2):152–159

    PubMed  CAS  Google Scholar 

  69. Guicciardi ME, Bronk SF, Gores GJ (2001) Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications. Am J Pathol 159(6):2045–2054

    PubMed  CAS  Google Scholar 

  70. Roberts LR, Bronk SF, Fesmier PJ, Agellon LB, Leung WY, Mao F, Gores GJ (1997) Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology 113(5):1714–1726

    PubMed  CAS  Google Scholar 

  71. Kasper M, Haase M, Schuh D, Müller M (1996) Immunolocalization of cathepsin D in pneumocytes of normal human lung and in pulmonary fibrosis. Virchows Arch 428(4–5):207–215

    PubMed  CAS  Google Scholar 

  72. Leto G, Pizzolanti G, Montalto G, Soresi M, Gebbia N (1997) Lysosomal cathepsins B and L and Stefin A blood levels in patients with hepatocellular carcinoma and/or liver cirrhosis: potential clinical implications. Oncology 54(1):79–83

    PubMed  CAS  Google Scholar 

  73. Okazaki S, Iwata Y, Hara T, Muroi E, Komura K, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Sato S (2010) Autoantibody against caspase-3, an executioner of apoptosis, in patients with systemic sclerosis. Rheumatol Int 30(7):871–878

    PubMed  CAS  Google Scholar 

  74. Plataki M, Darivianaki K, Delides G, Siafakas NM, Bouros D (2005) Expression of apoptotic and antiapoptotic markers in epithelial cells in idiopathic pulmonary fibrosis. Chest 127(1):266–274

    PubMed  Google Scholar 

  75. Piekarska A, Omulecka A, Szymczak W, Piekarski J (2007) Expression of tumour necrosis factor-related apoptosis-inducing ligand and caspase-3 in relation to grade of inflammation and stage of fibrosis in chronic hepatitis C. Histopathology 51(5):597–604

    PubMed  CAS  Google Scholar 

  76. Akasaka Y, Ono I, Fujita K, Masuda T, Asuwa N, Inuzuka K, Kiguchi H, Ishii T (2000) Enhanced expression of caspase-3 in hypertrophic scars and keloid: induction of caspase-3 and apoptosis in keloid fibroblasts in vitro. Lab Invest 80(3):345–357

    PubMed  CAS  Google Scholar 

  77. Scott CJ (2010) Biologic protease inhibitors as novel therapeutic agents. Biochimie 1:8

    Google Scholar 

  78. Scotton CJ, Krupiczojc MA, Konigshoff M, Mercer PF, Lee YC, Kaminski N, Morser J, Post JM, Maher TM, Nicholson AG, Moffatt JD, Laurent GJ, Derian CK, Eickelberg O, Chambers RC (2009) Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Invest 119:2550–2563

    PubMed  CAS  Google Scholar 

  79. Kubo H, Nakayama K, Yanai M, Suzuki T, Yamaya M, Watanabe M, Sasaki H (2005) Anticoagulant therapy for idiopathic pulmonary fibrosis. Chest 128:1475–1482

    PubMed  CAS  Google Scholar 

  80. Chambers RC (2003) Proteinase-activated receptors and the pathophysiology of pulmonary fibrosis. Drug Dev Res 60:29–35

    CAS  Google Scholar 

  81. Hernandez-Rodriguez NA, Cambrey AD, Harrison NK, Chambers RC, Gray AJ, Southcott AM, duBois RM, Black CM, Scully MF, McAnulty RJ et al (1995) Role of thrombin in pulmonary fibrosis. Lancet 346:1071–1073

    PubMed  CAS  Google Scholar 

  82. Imokawa S, Sato A, Hayakawa H, Kotani M, Urano T, Takada A (1997) Tissue factor expression and fibrin deposition in the lungs of patients with idiopathic pulmonary fibrosis and systemic sclerosis. Am J Respir Crit Care Med 156:631–636

    PubMed  CAS  Google Scholar 

  83. Andersson C, Sjoland AA, Mori M, Pardo A, Eriksson L, Bjermer L, Lofdahl CG, Selman M, Westergren-Thorsson G, Erjefalt J (2010) Altered lung mast cell populations infiltrate areas of inflammation and remodeling in patients with cystic fibrosis and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 181:A1426

    Google Scholar 

  84. Veerappan A, O’Connor N, Jung A, Brazin J, Reid AC, Kaner RJ, Silver RB (2010) Mast cells and fibroblasts work in tandem to promote pulmonary fibrosis. Am J Respir Crit Care Med 181:A1432

    Google Scholar 

  85. O’Brien-Ladner AR, Wesselius LJ, Stechschulte GJ (1993) Bleomycin injury of the lung in a mast-cell-deficient model. Agents Actions 39:20–24

    PubMed  Google Scholar 

  86. Hemmati A, Nazari AZ, Motlagh ME, Goldasteh S (2002) The role of sodium cromolyn in treatment of paraquat-induced pulmonary fibrosis in rat. Pharmacol Res 46:229–234

    PubMed  CAS  Google Scholar 

  87. Walker M, Harley R, LeRoy EC (1990) Ketotifen prevents skin fibrosis in the tight skin mouse. J Rheumatol 17:57–59

    PubMed  CAS  Google Scholar 

  88. Sakaguchi M, Takai S, Jin D, Okamoto Y, Muramatsu M, Kim S, Miyazaki M (2004) A specific chymase inhibitor, NK3201, suppresses bleomycin-induced pulmonary fibrosis in hamsters. Eur J Pharmacol 493:173–176

    PubMed  CAS  Google Scholar 

  89. Tomimori Y, Muto T, Saito K, Tanaka T, Maruoka H, Sumida M, Fukami H, Fukuda Y (2003) Involvement of mast cell chymase in bleomycin-induced pulmonary fibrosis in mice. Eur J Pharmacol 478(1):79–85

    Google Scholar 

  90. Scandiuzzi L, Beghdadi W, Daugas E, Abrink M, Tiwari N, Brochetta C, Claver J, Arouche N, Zang X, Pretolani M, Monteiro RC, Pejler G, Blank U (2003) Mouse mast cell protease-4 deteriorates renal function by contributing to inflammation and fibrosis in immune complex-mediated glomerulonephritis. J Immunol 185:624–633

    Google Scholar 

  91. Kanemitsu H, Takai S, Tsuneyoshi H, Nishina T, Yoshikawa K, Miyazaki M, Ikeda T, Komeda M (2006) Chymase inhibition prevents cardiac fibrosis and dysfunction after myocardial infarction in rats. Hypertens Res 29:57–64

    PubMed  CAS  Google Scholar 

  92. Matsumoto T, Wada A, Tsutamoto T, Ohnishi M, Isono T, Kinoshita M (2003) Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation 107:2555–2558

    PubMed  Google Scholar 

  93. Takai S, Jin D, Sakaguchi M, Katayama S, Muramatsu M, Matsumura E, Kim S, Miyazaki M (2003) A novel chymase inhibitor, 4-[1-([bis-(4-methyl-phenyl)-methyl]-carbamoyl)3-(2-ethoxy-benzyl)-4-oxo-a zetidine-2-yloxy]-benzoic acid (BCEAB), suppressed cardiac fibrosis in cardiomyopathic hamsters. J Pharmacol Exp Ther 305:17–23

    PubMed  CAS  Google Scholar 

  94. Yamanouchi H, Fujita J, Hojo S, Yoshinouchi T, Kamei T, Yamadori I, Ohtsuki Y, Ueda N, Takahara J (1998) Neutrophil elastase: alpha-1-proteinase inhibitor complex in serum and bronchoalveolar lavage fluid in patients with pulmonary fibrosis. Eur Respir J 11:120–125

    PubMed  CAS  Google Scholar 

  95. Song JS, Kang CM, Rhee CK, Yoon HK, Kim YK, Moon HS, Park SH (2009) Effects of elastase inhibitor on the epithelial cell apoptosis in bleomycin-induced pulmonary fibrosis. Exp Lung Res 35:817–829

    PubMed  CAS  Google Scholar 

  96. Dunsmore SE, Roes J, Chua FJ, Segal AW, Mutsaers SE, Laurent GJ (2001) Evidence that neutrophil elastase-deficient mice are resistant to bleomycin-induced fibrosis. Chest 120:35S–36S

    PubMed  CAS  Google Scholar 

  97. Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM, Muller E, Rettig WJ, Gorrell MD (1999) Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 29:1768–1778

    PubMed  CAS  Google Scholar 

  98. Levy MT, McCaughan GW, Marinos G, Gorrell MD (2002) Intrahepatic expression of the hepatic stellate cell marker fibroblast activation protein correlates with the degree of fibrosis in hepatitis C virus infection. Liver 22:93–101

    PubMed  CAS  Google Scholar 

  99. Escobar NRD, Lopez R, de Lara LGV (2010) Fibroblast activation protein-a (FAP) is differentailly expressed in fibroblast cultures from normal human and idiopathic pulmonary fibrosis lungs. Am J Respir Crit Care Med 181:A3513

    Google Scholar 

  100. Acharya PS, Zukas A, Chandan V, Katzenstein AL, Pure E (2006) Fibroblast activation protein: a serine protease expressed at the remodelling interface in idiopathic pulmonary fibrosis. Hum Pathol 37:352–360

    PubMed  CAS  Google Scholar 

  101. Fan MH, Majumdar RS, Kinder M, Razvi M, Christofidou-Solomiduo M (2010) A protective role for fibroblast activation protein (FAP) in pulmonary fibrosis. Am J Respir Crit Care Med 181:A1974

    Google Scholar 

  102. Duplantier J, Dubuisson L, Senant N, Freyburger G, Laurendeau I, Herbert JM, Desmouliere A, Rosenbaum J (2004) A role for thrombin in liver fibrosis. Gut 53:1682–1687

    PubMed  CAS  Google Scholar 

  103. Fiorucci S, Antonelli E, Distrutti E, Severino B, Fiorentina R, Baldoni M, Caliendo G, Santagada V, Morelli A, Cirino G (2004) PAR1 antagonism protects against experimental liver fibrosis. Role of proteinase receptors in stellate cell activation. Hepatology 39:365–375

    PubMed  CAS  Google Scholar 

  104. Howell DC, Johns RH, Lasky LA, Shan B, Scotton CJ, Laurent GJ, Chambers RC (2005) Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. Am J Pathol 166:1353–1365

    PubMed  CAS  Google Scholar 

  105. Chambers RC, Dabbagh K, McAnulty RJ, Gray AJ, Blanc-Brude OP, Laurent GJ (1998) Thrombin stimulates fibroblast procollagen production via proteolytic activation of protease-activated receptor 1. Biochem J 333(Pt 1):121–127

    PubMed  CAS  Google Scholar 

  106. Bogatkevich GS, Tourkina E, Silver RM, Ludwicka-Bradley A (2001) Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. J Biol Chem 276:45184–45192

    PubMed  CAS  Google Scholar 

  107. Chen LB, Buchanan JM (1975) Mitogenic activity of blood components I. Thrombin and prothrombin. Proc Natl Acad Sci USA 72:131–135

    PubMed  CAS  Google Scholar 

  108. Duhamel-Clerin E, Orvain C, Lanza F, Cazenave JP, Klein-Soyer C (1997) Thrombin receptor-mediated increase of two matrix metalloproteinases, MMP-1 and MMP-3, in human endothelial cells. Arterioscler Thromb Vasc Biol 17:1931–1938

    PubMed  CAS  Google Scholar 

  109. Lafleur MA, Hollenberg MD, Atkinson SJ, Knauper V, Murphy G, Edwards DR (2001) Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem J 357:107–115

    PubMed  CAS  Google Scholar 

  110. Gruber BL (2003) Mast cells in the pathogenesis of fibrosis. Curr Rheumatol Rep 5:147–153

    PubMed  Google Scholar 

  111. Lindberg BF, Gyllstedt E, Andersson KE (1997) Conversion of angiotensin I to angiotensin II by chymase activity in human pulmonary membranes. Peptides 18:847–853

    PubMed  CAS  Google Scholar 

  112. Wypij DM, Nichols JS, Novak PJ, Stacy DL, Berman J, Wiseman JS (1992) Role of mast cell chymase in the extracellular processing of big-endothelin-1 to endothelin-1 in the perfused rat lung. Biochem Pharmacol 43:845–853

    PubMed  CAS  Google Scholar 

  113. Lindstedt K, Wang AY, Shiota N, Saarinen J, Hyytiainen M, Kokkonen JO, Keski-Oja J, Kovanen PT (2001) Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase. FASEB J 15:1377–1388

    PubMed  CAS  Google Scholar 

  114. Tchougounova E, Lundequist A, Fajardo I, Winberg JO, Abrink M, Pejler G (2005) A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 280:9291–9296

    PubMed  CAS  Google Scholar 

  115. Levi-Schaffer F, Piliponsky AM (2003) Tryptase, a novel link between allergic inflammation and fibrosis. Trends Immunol 24:158–161

    PubMed  CAS  Google Scholar 

  116. Pesci A, Majori M, Piccoli ML, Casalini A, Curti A, Franchini D, Gabrielli M (1996) Mast cells in bronchiolitis obliterans organizing pneumonia. Mast cell hyperplasia and evidence for extracellular release of tryptase. Chest 110:383–391

    PubMed  CAS  Google Scholar 

  117. Matsunaga Y, Terada T (2000) Mast cell subpopulations in chronic inflammatory hepatobiliary diseases. Liver 20:152–156

    PubMed  CAS  Google Scholar 

  118. Kondo S, Kagami S, Kido H, Strutz F, Muller GA, Kuroda Y (2001) Role of mast cell tryptase in renal interstitial fibrosis. J Am Soc Nephrol 12:1668–1676

    PubMed  CAS  Google Scholar 

  119. Apa DD, Cayan S, Polat A, Akbay E (2002) Mast cells and fibrosis on testicular biopsies in male infertility. Arch Androl 48:337–344

    PubMed  CAS  Google Scholar 

  120. Ruoss SJ, Hartmann T, Caughey GH (1991) Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 88:493–499

    PubMed  CAS  Google Scholar 

  121. Brown JK, Jones CA, Rooney LA, Caughey GH, Hall IP (2002) Tryptase’s potent mitogenic effects in human airway smooth muscle cells are via nonproteolytic actions. Am J Physiol Lung Cell Mol Physiol 282:L197–L206

    PubMed  CAS  Google Scholar 

  122. Cairns JA, Walls AF (1996) Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. J Immunol 156:275–283

    PubMed  CAS  Google Scholar 

  123. Akers IA, Parsons M, Hill MR, Hollenberg MD, Sanjar S, Laurent GJ, McAnulty RJ (2000) Mast cell tryptase stimulates human lung fibroblast proliferation via protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 278:L193–L201

    PubMed  CAS  Google Scholar 

  124. Frungieri MB, Weidinger S, Meineke V, Kohn FM, Mayerhofer A (2002) Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARgamma: Possible relevance to human fibrotic disorders. Proc Natl Acad Sci USA 99:15072–15077

    PubMed  CAS  Google Scholar 

  125. Ginzberg HH, Shannon PT, Suzuki T, Hong O, Vachon E, Moraes T, Abreu MT, Cherepanov V, Wang X, Chow CW, Downey GP (2004) Leukocyte elastase induces epithelial apoptosis: role of mitochondial permeability changes and Akt. Am J Physiol Gastrointest Liver Physiol 287:G286–G298

    PubMed  CAS  Google Scholar 

  126. Wallach-Dayan SB, Izbicki G, Cohen PY, Gerstl-Golan R, Fine A, Breuer R (2006) Bleomycin initiates apoptosis of lung epithelial cells by ROS but not by Fas/FasL pathway. Am J Physiol Lung Cell Mol Physiol 290:L790–L796

    PubMed  CAS  Google Scholar 

  127. Taipale J, Lohi J, Saarinen J, Kovanen PT, Keski-Oja J (1995) Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 270:4689–4696

    PubMed  CAS  Google Scholar 

  128. Chua F, Dunsmore E, Clingen PH, Mutsaers SE, Shapiro SD, Segal AW, Roes J, Laurent GJ (2007) Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. Am J Pathol 170:65–74

    PubMed  CAS  Google Scholar 

  129. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274:36505–36512

    PubMed  CAS  Google Scholar 

  130. Goodman JD, Rozypal TL, Kelly T (2003) Seprase, a membrane-bound protease, alleviates the serum growth requirement of human breast cancer cells. Clin Exp Metastasis 20:459–470

    PubMed  CAS  Google Scholar 

  131. Huang Y, Wang S, Kelly T (2004) Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Cancer Res 64:2712–2716

    PubMed  CAS  Google Scholar 

  132. Niedermeyer J, Kriz M, Hilberg F, Garin-Chesa P, Bamberger U, Lenter MC, Park J, Viertel B, Puschner H, Mauz M, Rettig WJ, Schnapp A (2000) Targeted disruption of mouse fibroblast activation protein. Mol Cell Biol 20:1089–1094

    PubMed  CAS  Google Scholar 

  133. Juillerat-Jeanneret L, Gerber-Lemaire S (2009) The prolyl-aminodipeptidases and their inhibitors as therapeutic targets for fibrogenic disorders. Mini Rev Med Chem 9:215–226

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J. Laurent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Heightman, M., Ort, T., de Garavilla, L., Kilgore, K., Laurent, G.J. (2011). Proteases and Fibrosis. In: Vergnolle, N., Chignard, M. (eds) Proteases and Their Receptors in Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0157-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0157-7_7

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0156-0

  • Online ISBN: 978-3-0348-0157-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics