Skip to main content

Terminating Protease Receptor Signaling

  • Chapter
  • First Online:
  • 762 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Signals generated by proteolytic activation of Protease-activated receptors (PARs) must be terminated to avoid uncontrolled cellular events, such as proliferation, cell migration, and inflammation. Because PARs are irreversibly activated, this is of paramount importance because, unlike most other GPCRs, the ligand cannot dissociate or diffuse away. Signal termination within the cell consists of a multi-step process involving desensitization and internalization of receptors. Furthermore, given the wealth of available proteases to activate these receptors, mechanisms exist to disarm these receptors extracellularly, rendering them insensitive to activation. In this chapter, the process of signal termination will be separated into: (1) Receptor uncoupling, in which we discuss intracellular and extracellular mechanisms of receptor desensitization, (2) Receptor Endocytosis, and (3) Termination of downstream signaling pathways. Discussion will focus on PAR1, PAR2, and PAR4, as PAR3 is thought to signal primarily through activation of either PAR1 or PAR4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gehret AU, Hinkle PM (2010) Importance of regions outside the cytoplasmic tail of G protein-coupled receptors for phosphorylation and dephosphorylation. Biochem J 428:235–245

    Article  PubMed  CAS  Google Scholar 

  2. Shenoy SK, Lefkowitz RJ (2003) Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 375:503–515

    Article  PubMed  CAS  Google Scholar 

  3. Tobin AB, Butcher AJ, Kong KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 29:413–420

    Article  PubMed  CAS  Google Scholar 

  4. Ricks TK, Trejo J (2009) Phosphorylation of protease-activated receptor-2 differentially regulates desensitization and internalization. J Biol Chem 284:34444–57

    Article  PubMed  CAS  Google Scholar 

  5. Ishii K, Chen J, Ishii M, Koch WJ, Freedman NJ, Lefkowitz RJ, Coughlin SR (1994) Inhibition of thrombin receptor signaling by a G-protein coupled receptor kinase. Functional specificity among G-protein coupled receptor kinases. J Biol Chem 269:1125–1130

    PubMed  CAS  Google Scholar 

  6. Tiruppathi C, Yan W, Sandoval R, Naqvi T, Pronin AN, Benovic JL, Malik AB (2000) G protein-coupled receptor kinase-5 regulates thrombin-activated signaling in endothelial cells. Proc Natl Acad Sci USA 97:7440–7445

    Article  PubMed  CAS  Google Scholar 

  7. Shapiro MJ, Weiss EJ, Faruqi TR, Coughlin SR (2000) Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem 275:25216–25221

    Article  PubMed  CAS  Google Scholar 

  8. Soh UJ, Dores MR, Chen B, Trejo J (2010) Signal transduction by protease-activated receptors. Br J Pharmacol 160:191–203

    Article  PubMed  CAS  Google Scholar 

  9. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW (2000) Beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281

    Article  PubMed  CAS  Google Scholar 

  10. Kumar P, Lau C, Wang P, Mathur M, DeFea KA (2007) Differential effects of {beta}-arrestins on internalization, desensitization and ERK1/2 activation downstream of Protease Activated Receptor-2. Am J Physiol Cell Physiol 293:C346–C367

    Article  PubMed  CAS  Google Scholar 

  11. Yan W, Tiruppathi C, Lum H, Qiao R, Malik AB (1998) Protein kinase Cbeta regulates heterologous desensitization of thrombin receptor (PAR-1) in endothelial cells. Am J Physiol Cell Physiol 274:C387–C395

    CAS  Google Scholar 

  12. Ferguson SSG (2007) Phosphorylation-independent attenuation of GPCR signalling. Trends Pharmacol Sci 28:173–179

    Article  PubMed  CAS  Google Scholar 

  13. Bohm SK, Khitin LM, Grady EF, Aponte G, Payan DG, Bunnett NW (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem 271:22003–22016

    Article  PubMed  CAS  Google Scholar 

  14. Stalheim L, Ding Y, Gullapalli A, Paing MM, Wolfe BL, Morris DR, Trejo J (2005) Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking. Mol Pharmacol 67:78–87

    Article  PubMed  CAS  Google Scholar 

  15. Chen CH, Paing MM, Trejo J (2004) Termination of protease-activated receptor-1 signaling by + ¦-arrestins is independent of receptor phosphorylation. J Biol Chem 279:10020–10031

    Article  PubMed  CAS  Google Scholar 

  16. Paing MM, Stutts AB, Kohout TA, Lefkowitz RJ, Trejo J (2002) +¦-Arrestins regulate protease-activated receptor-1 desensitization but not internalization or down-regulation. J Biol Chem 277:1292–1300

    Article  PubMed  CAS  Google Scholar 

  17. Wang P, DeFea K (2006) Protease-activated-receptor-2 simultaneously directs beta-arrestin-dependent inhibition and Gaq-dependent activation of PI3K. Biochemistry 45:9374–9385

    Article  PubMed  CAS  Google Scholar 

  18. Ge L, Ly Y, Hollenberg M, DeFea K (2003) A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem 278:34418–34426

    Article  PubMed  CAS  Google Scholar 

  19. Wang P, Kumar P, Wang C, DeFea K (2007) Differential regulation of Class IA Phosphatidylinositol 3-Kinase catalytic subunits p110a and ß by protease-activated-receptor-2 and ß-arrestins. Biochem J 428:221–230

    Google Scholar 

  20. Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA (2007) beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282:20634–20646

    Article  PubMed  CAS  Google Scholar 

  21. Zoudilova M, Min J, Richards HL, Carter D, Huang T, DeFea KA (2010) {beta}-Arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated-receptor-2. J Biol Chem 2010 May 7;285(19):14318–14329

    Google Scholar 

  22. Swift S, Xu J, Trivedi V, Austin KM, Tressel SL, Zhang L, Covic L, Kuliopulos A (2010) A novel protease-activated receptor-1 Interactor, Bicaudal D1, regulates G protein signaling and internalization. J Biol Chem 285:11402–11410

    Article  PubMed  CAS  Google Scholar 

  23. Han J, Liu G, Profirovic J, Niu J, Voyno-Yasenetskaya T (2009) Zyxin is involved in thrombin signaling via interaction with PAR-1 receptor. FASEB J 23:4193–4206

    Article  PubMed  CAS  Google Scholar 

  24. Luo W, Wang Y, Hanck T, Stricker R, Reiser G (2006) Jab1, a novel protease-activated receptor-2 (PAR-2)-interacting protein, is involved in PAR-2-induced activation of activator protein-1. J Biol Chem 281:7927–7936

    Article  PubMed  CAS  Google Scholar 

  25. Ramachandran R, Sadofsky LR, Xiao Y, Botham A, Cowen M, Morice AH, Compton SJ (2007) Inflammatory mediators modulate thrombin and cathepsin-G signaling in human bronchial fibroblasts by inducing expression of proteinase-activated receptor-4. Am J Physiol Lung Cell Mol Physiol 292:L788–L798

    Article  PubMed  CAS  Google Scholar 

  26. Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI, Scarisbrick I, Andrade-Gordon P, Cottrell GS, Bunnett NW, Diamandis EP, Hollenberg MD (2006) Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 281:32095–32112

    Article  PubMed  CAS  Google Scholar 

  27. Dulon S, Cande C, Bunnett NW, Hollenberg MD, Chignard M, Pidard D (2003) Proteinase-activated receptor-2 and human lung epithelial cells: disarming by neutrophil serine proteinases. Am J Respir Cell Mol Biol 28:339–346

    Article  PubMed  CAS  Google Scholar 

  28. Roosterman D, Schmidlin F, Bunnett NW (2003) Rab5a and rab11a mediate agonist-induced trafficking of protease-activated receptor 2. Am J Physiol Cell Physiol 284:C1319–C1329

    PubMed  CAS  Google Scholar 

  29. Trejo J, Altschuler Y, Fu HW, Mostov KE, Coughlin SR (2000) Protease-activated receptor-1 down-regulation. J Biol Chem 275:31255–31265

    Article  PubMed  CAS  Google Scholar 

  30. Dery O, Thoma MS, Wong H, Grady EF, Bunnett NW (1999) Trafficking of proteinase-activated receptor-2 and beta-arrestin-1 tagged with green fluorescent protein. beta-Arrestin-dependent endocytosis of a proteinase receptor. J Biol Chem 274:18524–18535

    Article  PubMed  CAS  Google Scholar 

  31. Trejo J, Hammes SR, Coughlin SR (1998) Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci USA 95:13698–13702

    Article  PubMed  CAS  Google Scholar 

  32. Gullapalli A, Wolfe BL, Griffin CT, Magnuson T, Trejo J (2006) An essential role for SNX1 in lysosomal sorting of protease-activated receptor-1: evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Mol Biol Cell 17:1228–1238

    Article  PubMed  CAS  Google Scholar 

  33. Wang Y, Zhou Y, Szabo K, Haft CR, Trejo J (2002) Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol Biol Cell 13:1965–1976

    Article  PubMed  CAS  Google Scholar 

  34. Wolfe BL, Marchese A, Trejo J (2007) Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. J Cell Biol 177:905–916

    Article  PubMed  CAS  Google Scholar 

  35. Jacob C, Cottrell GS, Gehringer D, Schmidlin F, Grady EF, Bunnett NW (2005) c-Cbl mediates ubiquitination, degradation, and down-regulation of human protease-activated receptor 2. J Biol Chem 280:16076–16087

    Article  PubMed  CAS  Google Scholar 

  36. Hasdemir B, Murphy JE, Cottrell GS, Bunnett NW (2009) Endosomal deubiquitinating enzymes control ubiquitination and down-regulation of protease-activated receptor 2. J Biol Chem 284:28453–28466

    Article  PubMed  CAS  Google Scholar 

  37. Wang P, Jiang YWY, Shyy JY, DeFea KA (2010) Beta-arrestin inhibits CAMKKbeta-dependent AMPK activation downstream of protease-activated-receptor-2. BMC Biochem 2010 Sep 21;11:36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn A. DeFea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

DeFea, K.A. (2011). Terminating Protease Receptor Signaling. In: Vergnolle, N., Chignard, M. (eds) Proteases and Their Receptors in Inflammation. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0157-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0157-7_13

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0156-0

  • Online ISBN: 978-3-0348-0157-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics