Skip to main content

Artemisinins: Artemisinin, Dihydroartemisinin, Artemether and Artesunate

  • Chapter
  • First Online:

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Artemisinin comes from the plant, Artemisia annua, an ancient Chinese herbal remedy for relapsing fever. Rediscovery of its antimalarial action in China in the 1970s has seen it and its semisynthetic derivatives become the most useful drugs for most malarial illness. Artemisinins have a sesquiterpene lactone structure. Their anti-microbial action relates to a characteristic endoperoxide moiety. The precise mechanism of action remains controversial. Experimental induction of parasite resistance both in vitro and in vivo has been followed by recent initial clinical reports of resistance. Artemisinins are currently preferred as parenteral treatment of severe malaria, pre-referral rectal treatment and, as part of artemisinin combination therapy (ACT) oral treatment of uncomplicated falciparum malaria. Currently, amongst the most widely used drugs in the world, their future will be determined by the rate and extent of development of resistance. Better understanding of mechanisms of action and resistance and policy initiatives to prevent or delay resistance will be crucial.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. WHO. Malaria Treatment Policies (by region). http://www.who.int/malaria/publications/treatment-policies/en/. Accessed 24 Apr 2010

  2. WHO (2010) Guidelines for the treatment of malaria, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  3. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    Article  PubMed  CAS  Google Scholar 

  4. Willcox M, Bodeker G, Bourdy G, Dhingra V, Falquet J, Ferreira JFS, Graz B, Hirt H-M (2004) Artemisia annua as a traditional herbal antimalarial. In: Willcox M, Bodeker G, Raoanaivo P (eds) Traditional medicinal plants and malaria. CRC, Boca Raton, pp 43–59

    Google Scholar 

  5. Hsu E (2006) Reflections on the ‘discovery’ of the antimalarial qinghao. Br J Clin Pharmacol 61:666–670

    Article  PubMed  Google Scholar 

  6. Keiser J, Utzinger J (2007) Artemisinins and synthetic trioxolanes in the treatment of helminth infections. Curr Opin Infect Dis 20:605–612

    Article  PubMed  CAS  Google Scholar 

  7. Ilett K, Batty K (2005) Artemisinin and its derivatives. In: Yu VL, Edwards G, McKinnon PS, Peloquin CA (eds) Antimicrobial therapy and vaccines. ESun Technologies, Pitsburg, PA, pp 981–1002

    Google Scholar 

  8. Wright CW, Linley PA, Brun R, Wittlin S, Hsu E (2010) Ancient Chinese methods are remarkably effective for the preparation of artemisinin-rich extracts of Qing Hao with potent antimalarial activity. Molecules 15:804–812

    Article  PubMed  CAS  Google Scholar 

  9. China Cooperative Research Group on qinghaosu and its derivatives as antimalarials (1982) Clinical studies on the treatment of malaria with qinghaosu and its derivatives. J Tradit Chin Med 2:45–50

    Google Scholar 

  10. Schlitzer M (2007) Malaria chemotherapeutics. Part I: History of antimalarial drug development, currently used therapeutics, and drugs in clinical development. ChemMedChem 2:944–986

    Article  PubMed  CAS  Google Scholar 

  11. Bruce-Chwatt LJ (1982) Qinghaosu: a new antimalarial. Br Med J (Clin Res Ed) 284:767–768

    Article  CAS  Google Scholar 

  12. Jiang JB, Li GQ, Guo XB, Kong YC, Arnold K (1982) Antimalarial activity of mefloquine and qinghaosu. Lancet 2:285–288

    Article  PubMed  CAS  Google Scholar 

  13. Bruce-Chwatt LJ (1985) Recent trends of chemotherapy and vaccination against malaria: new lamps for old. Br Med J (Clin Res Ed) 291:1072–1076

    Article  CAS  Google Scholar 

  14. Nosten F, ter Kuile F, Chongsuphajaisiddhi T, Luxemburger C, Webster HK, Edstein M, Phaipun L, Thew KL, White NJ (1991) Mefloquine-resistant falciparum malaria on the Thai-Burmese border. Lancet 337:1140–1143

    Article  PubMed  CAS  Google Scholar 

  15. Bunnag D, Viravan C, Looareesuwan S, Karbwang J, Harinasuta T (1991) Clinical trial of artesunate and artemether on multidrug resistant falciparum malaria in Thailand. A preliminary report. SE Asian J Trop Med Publ Health 22:380–385

    CAS  Google Scholar 

  16. Nosten F, van Vugt M, Price R, Luxemburger C, Thway KL, Brockman A, McGready R, ter Kuile F, Looareesuwan S, White NJ (2000) Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356:297–302

    Article  PubMed  CAS  Google Scholar 

  17. Edwards G (1994) Measurement of artemisinin and its derivatives in biological fluids. Trans R Soc Trop Med Hyg 88:37–39

    Article  CAS  Google Scholar 

  18. Meshnick SR (2002) Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol 32:1655–1660

    Article  PubMed  CAS  Google Scholar 

  19. Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961

    Article  PubMed  CAS  Google Scholar 

  20. Karunajeewa HA, Manning L, Mueller I, Ilett KF, Davis TM (2007) Rectal administration of artemisinin derivatives for the treatment of malaria. JAMA 297:2381–2390

    Article  PubMed  CAS  Google Scholar 

  21. McIntosh HM, Olliaro P (2000) Artemisinin derivatives for treating severe malaria. Cochrane Database Syst Rev CD000527

    Google Scholar 

  22. McIntosh HM, Olliaro P (2000) Artemisinin derivatives for treating uncomplicated malaria. Cochrane Database Syst Rev CD000256

    Google Scholar 

  23. Myint HY, Tipmanee P, Nosten F, Day NPJ, Pukrittayakamee S, Looareesuwan S, White NJ (2004) A systematic overview of published antimalarial drug trials. Trans R Soc Trop Med Hyg 98:73–81

    Article  PubMed  Google Scholar 

  24. Sinclair D, Zani B, Donegan S, Olliaro P, Garner P (2009) Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst Rev CD007483

    Google Scholar 

  25. Dondorp A, Nosten F, Stepniewska K, Day N, White N (2005) Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366:717–725

    Article  PubMed  CAS  Google Scholar 

  26. Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K et al (2010) Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376:1647–1657

    Article  PubMed  CAS  Google Scholar 

  27. White NJ, Nosten F, Looareesuwan S, Watkins WM, Marsh K, Snow RW, Kokwaro G, Ouma J, Hien TT, Molyneux ME et al (1999) Averting a malaria disaster. Lancet 353:1965–1967

    Article  PubMed  CAS  Google Scholar 

  28. WHO (2006) Guidelines for the treatment of malaria. WHO, Geneva

    Google Scholar 

  29. Kremsner PG, Krishna S (2004) Antimalarial combinations. Lancet 364:285–294

    Article  PubMed  CAS  Google Scholar 

  30. Nosten F, Luxemburger C, ter Kuile FO, Woodrow C, Eh JP, Chongsuphajaisiddhi T, White NJ (1994) Treatment of multidrug-resistant Plasmodium falciparum malaria with 3-day artesunate-mefloquine combination. J Infect Dis 170:971–977

    Article  PubMed  CAS  Google Scholar 

  31. Davis A (2004) Clinical trials in parasitic diseases. Trans R Soc Trop Med Hyg 98:139–141

    Article  PubMed  Google Scholar 

  32. Barnes KI, Chanda P, Ab Barnabas G (2009) Impact of the large-scale deployment of artemether/lumefantrine on the malaria disease burden in Africa: case studies of South Africa, Zambia and Ethiopia. Malar J 8:S8

    Article  PubMed  CAS  Google Scholar 

  33. Barnes KI, Durrheim DN, Little F, Jackson A, Mehta U, Allen E, Dlamini SS, Tsoka J, Bredenkamp B, Mthembu DJ et al (2005) Effect of artemether-lumefantrine policy and improved vector control on malaria burden in KwaZulu-Natal, South Africa. PLoS Med 2:e330

    Article  PubMed  Google Scholar 

  34. Greenwood B (2009) Can malaria be eliminated? Trans R Soc Trop Med Hyg 103:S2–S5

    Article  PubMed  Google Scholar 

  35. White NJ (2008) The role of anti-malarial drugs in eliminating malaria. Malar J 7:S8

    Article  PubMed  CAS  Google Scholar 

  36. Peters W, Robinson BL (1999) The chemotherapy of rodent malaria. LVI. Studies on the development of resistance to natural and synthetic endoperoxides. Ann Trop Med Parasitol 93:325–329

    Article  PubMed  CAS  Google Scholar 

  37. WHO (2001) Antimalarial drug combination therapy. Report of a technical consultation. WHO, Geneva

    Google Scholar 

  38. WHO (2007) Use of rectal artesmisinin based suppositories in the management of severe malaria. Report of a WHO Informal Consultation, 27–28 Mar 2006

    Google Scholar 

  39. Afonso A, Hunt P, Cheesman S, Alves AC, Cunha CV, do Rosario V, Cravo P (2006) Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 50:480–489

    Article  PubMed  CAS  Google Scholar 

  40. Walker DJ, Pitsch JL, Peng MM, Robinson BL, Peters W, Bhisutthibhan J, Meshnick SR (2000) Mechanisms of artemisinin resistance in the rodent malaria pathogen Plasmodium yoelii. Antimicrob Agents Chemother 44:344–347

    Article  PubMed  CAS  Google Scholar 

  41. Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, Ekala MT, Bouchier C, Esterre P, Fandeur T et al (2005) Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 366:1960–1963

    Article  PubMed  CAS  Google Scholar 

  42. Rehwagen C (2006) WHO ultimatum on artemisinin monotherapy is showing results. BMJ 332:1176

    Article  PubMed  Google Scholar 

  43. Dondorp AM, Yeung S, White L, Nguon C, Day NP, Socheat D, von Seidlein L (2010) Artemisinin resistance: current status and scenarios for containment. Nat Rev Microbiol 8:272–280

    Article  PubMed  CAS  Google Scholar 

  44. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620

    Article  PubMed  CAS  Google Scholar 

  45. Samarasekera U (2009) Countries race to contain resistance to key antimalarial. Lancet 374:277–280

    Article  PubMed  Google Scholar 

  46. Li J, Zhou B (2010) Biological actions of artemisinin: insights from medicinal chemistry studies. Molecules 15:1378–1397

    Article  PubMed  CAS  Google Scholar 

  47. Schlitzer M (2008) Antimalarial drugs – what is in use and what is in the pipeline. Arch Pharm (Weinheim) 341:149–163

    Article  CAS  Google Scholar 

  48. Chemical Abstracts Services SciFinder Scholar database. American Chemical Society, Washington DC, USA

    Google Scholar 

  49. Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 29:520–527

    Article  PubMed  CAS  Google Scholar 

  50. O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin–the debate continues. Molecules 15:1705–1721

    Article  PubMed  CAS  Google Scholar 

  51. Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJ, Marschall M (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811

    Article  PubMed  CAS  Google Scholar 

  52. O’Neil MT, Korsinczky ML, Gresty KJ, Auliff A, Cheng Q (2007) A novel Plasmodium falciparum expression system for assessing antifolate resistance caused by mutant P. vivax dihydrofolate reductase-thymidylate synthase. J Infect Dis 196:467–474

    Article  PubMed  CAS  Google Scholar 

  53. Meshnick SR (1994) The mode of action of antimalarial endoperoxides. Trans R Soc Trop Med Hyg 88:31–32

    Article  CAS  Google Scholar 

  54. Jefford CW (2001) Why artemisinin and certain synthetic peroxides are potent antimalarials. Implications for the mode of action. Curr Med Chem 8:1803–1826

    Article  PubMed  CAS  Google Scholar 

  55. Posner GH, Wang D, Cumming JN, Oh CH, French AN, Bodley AL, Shapiro TA (1995) Further evidence supporting the importance of and the restrictions on a carbon-centered radical for high antimalarial activity of 1,2,4-trioxanes like artemisinin. J Med Chem 38:2273–2275

    Article  PubMed  CAS  Google Scholar 

  56. Haynes RK, Chan WC, Lung CM, Uhlemann AC, Eckstein U, Taramelli D, Parapini S, Monti D, Krishna S (2007) The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centred radicals as bioactive intermediates. ChemMedChem 2:1480–1497

    Article  PubMed  CAS  Google Scholar 

  57. Creek DJ, Charman WN, Chiu FC, Prankerd RJ, Dong Y, Vennerstrom JL, Charman SA (2008) Relationship between antimalarial activity and heme alkylation for spiro- and dispiro-1,2,4-trioxolane antimalarials. Antimicrob Agents Chemother 52:1291–1296

    Article  PubMed  CAS  Google Scholar 

  58. Meshnick SR, Haynes RK, Monti D, Taramelli D, Basilico N, Parapini S, Olliaro P (2003) Artemisinin and heme. Antimicrob Agents Chemother 47:2712–2713

    Article  PubMed  CAS  Google Scholar 

  59. Haynes RK, Monti D, Taramelli D, Basilico N, Parapini S, Olliaro P (2003) Artemisinin antimalarials do not inhibit hemozoin formation. Antimicrob Agents Chemother 47:1175

    Article  PubMed  CAS  Google Scholar 

  60. Krishna S, Woodrow CJ, Staines HM, Haynes RK, Mercereau-Puijalon O (2006) Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol Med 12:200–205

    Article  PubMed  CAS  Google Scholar 

  61. Nagamune K, Beatty WL, Sibley LD (2007) Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukaryot Cell 6:2147–2156

    Article  PubMed  CAS  Google Scholar 

  62. Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK et al (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol 12:628–629

    Article  PubMed  CAS  Google Scholar 

  63. Valderramos SG, Scanfeld D, Uhlemann AC, Fidock DA, Krishna S (2010) Investigations into the role of the Plasmodium falciparum SERCA (PfATP6) L263E mutation in artemisinin action and resistance. Antimicrob Agents Chemother 54:3842–3852

    Article  PubMed  CAS  Google Scholar 

  64. Witkowski B, Lelievre J, Barragan MJ, Laurent V, Su XZ, Berry A, Benoit-Vical F (2010) Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54:1872–1877

    Article  PubMed  CAS  Google Scholar 

  65. Krishna S, Pulcini S, Fatih F, Staines H (2010) Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol 26:517–523

    Article  PubMed  CAS  Google Scholar 

  66. Woodrow CJ, Bustamante LY (2011) Mechanisms of artemisinin action and resistance: wider focus is needed. Trends Parasitol 27:2–3; author reply 3–4

    Google Scholar 

  67. Li W, Mo W, Shen D, Sun L, Wang J, Lu S, Gitschier JM, Zhou B (2005) Yeast model uncovers dual roles of mitochondria in action of artemisinin. PLoS Genet 1:e36

    Article  PubMed  CAS  Google Scholar 

  68. Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B (2010) Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One 5:e9582

    Article  PubMed  CAS  Google Scholar 

  69. Hastings IM, Watkins WM, White NJ (2002) The evolution of drug-resistant malaria: the role of drug elimination half-life. Philos Trans R Soc Lond B Biol Sci 357:505–519

    Article  PubMed  CAS  Google Scholar 

  70. Stepniewska K, White NJ (2008) The pharmacokinetic determinants of the window of selection for antimalarial drug resistance. Antimicrob Agents Chemother 52(5):1589–96

    Article  PubMed  CAS  Google Scholar 

  71. White NJ (2004) Antimalarial drug resistance. J Clin Invest 113:1084–1092

    PubMed  CAS  Google Scholar 

  72. Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q (2000) Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44:2100–2108

    Article  PubMed  CAS  Google Scholar 

  73. White N (1999) Antimalarial drug resistance and combination chemotherapy. Philos Trans R Soc Lond B Biol Sci 354:739–749

    Article  PubMed  CAS  Google Scholar 

  74. Cowman AF, Galatis D, Thompson JK (1994) Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci USA 91:1143–1147

    Article  PubMed  CAS  Google Scholar 

  75. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906–909

    Article  PubMed  CAS  Google Scholar 

  76. Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ et al (2004) Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364:438–447

    Article  PubMed  CAS  Google Scholar 

  77. Price RN, Uhlemann AC, van Vugt M, Brockman A, Hutagalung R, Nair S, Nash D, Singhasivanon P, Anderson TJ, Krishna S et al (2006) Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis 42:1570–1577

    Article  PubMed  CAS  Google Scholar 

  78. Raman J, Little F, Roper C, Kleinschmidt I, Cassam Y, Maharaj R, Barnes KI (2010) Five years of large-scale dhfr and dhps mutation surveillance following the phased implementation of artesunate plus sulfadoxine-pyrimethamine in Maputo Province, Southern Mozambique. Am J Trop Med Hyg 82:788–794

    Article  PubMed  Google Scholar 

  79. Chavchich M, Gerena L, Peters J, Chen N, Cheng Q, Kyle DE (2010) Induction of resistance to artemisinin derivatives in Plasmodium falciparum: role of Pfmdr1 amplification and expression. Antimicrob Agents Chemother 54(6):2455–64

    Article  PubMed  CAS  Google Scholar 

  80. Hunt P, Afonso A, Creasey A, Culleton R, Sidhu AB, Logan J, Valderramos SG, McNae I, Cheesman S, do Rosario V et al (2007) Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol Microbiol 65:27–40

    Article  PubMed  CAS  Google Scholar 

  81. Jambou R, Martinelli A, Pinto J, Gribaldo S, Legrand E, Niang M, Kim N, Pharath L, Volnay B, Ekala MT et al (2010) Geographic structuring of the Plasmodium falciparum sarco(endo)plasmic reticulum Ca2+ ATPase (PfSERCA) gene diversity. PLoS One 5:e9424

    Article  PubMed  CAS  Google Scholar 

  82. Shahinas D, Lau R, Khairnar K, Hancock D, Pillai DR (2011) Artesunate misuse and Plasmodium falciparum malaria in traveler returning from Africa. Emerg Infect Dis 16:1608–1610

    Article  Google Scholar 

  83. Tanabe K, Zakeri S, Palacpac NM, Afsharpad M, Randrianarivelojosia M, Kaneko A, Marma AS, Horii T, Mita T (2011) Spontaneous mutations in the Plasmodium falciparum sarcoplasmic/ endoplasmic reticulum Ca2+-ATPase (PfATP6) gene among geographically widespread parasite populations unexposed to artemisinin-based combination therapies. Antimicrob Agents Chemother 55:94–100

    Article  PubMed  CAS  Google Scholar 

  84. Vinayak S, Alam MT, Mixson-Hayden T, McCollum AM, Sem R, Shah NK, Lim P, Muth S, Rogers WO, Fandeur T et al (2010) Origin and evolution of sulfadoxine resistant Plasmodium falciparum. PLoS Pathog 6:e1000830

    Article  PubMed  CAS  Google Scholar 

  85. Newton P, Proux S, Green M, Smithuis F, Rozendaal J, Prakongpan S, Chotivanich K, Mayxay M, Looareesuwan S, Farrar J et al (2001) Fake artesunate in southeast Asia. Lancet 357:1948–1950

    Article  PubMed  CAS  Google Scholar 

  86. Anderson TJ, Nair S, Nkhoma S, Williams JT, Imwong M, Yi P, Socheat D, Das D, Chotivanich K, Day NP et al (2010) High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in western Cambodia. J Infect Dis 201:1326–1330

    Article  PubMed  CAS  Google Scholar 

  87. Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, Day NP, White NJ, White LJ (2009) The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J 8:31

    Article  PubMed  CAS  Google Scholar 

  88. Rogers WO, Sem R, Tero T, Chim P, Lim P, Muth S, Socheat D, Ariey F, Wongsrichanalai C (2009) Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia. Malar J 8:10

    Article  PubMed  CAS  Google Scholar 

  89. Li Q, Lugt CB, Looareesuwan S, Krudsood S, Wilairatana P, Vannaphan S, Chalearmrult K, Milhous WK (2004) Pharmacokinetic investigation on the therapeutic potential of artemotil (beta-arteether) in Thai patients with severe Plasmodium falciparum malaria. Am J Trop Med Hyg 71:723–731

    PubMed  CAS  Google Scholar 

  90. Sabarinath SN, Asthana OP, Puri SK, Srivastava K, Madhusudanan KP, Gupta RC (2005) Clinical pharmacokinetics of the diastereomers of arteether in healthy volunteers. Clin Pharmacokinet 44:1191–1203

    Article  PubMed  CAS  Google Scholar 

  91. Ilett KF, Batty KT, Powell SM, Binh TQ, le Thu TA, Phuong HL, Hung NC, Davis TM (2002) The pharmacokinetic properties of intramuscular artesunate and rectal dihydroartemisinin in uncomplicated falciparum malaria. Br J Clin Pharmacol 53:23–30

    Article  PubMed  CAS  Google Scholar 

  92. Davis TM, Phuong HL, Ilett KF, Hung NC, Batty KT, Phuong VD, Powell SM, Thien HV, Binh TQ (2001) Pharmacokinetics and pharmacodynamics of intravenous artesunate in severe falciparum malaria. Antimicrob Agents Chemother 45:181–186

    Article  PubMed  CAS  Google Scholar 

  93. Batty KT, Thu LT, Davis TM, Ilett KF, Mai TX, Hung NC, Tien NP, Powell SM, Thien HV, Binh TQ et al (1998) A pharmacokinetic and pharmacodynamic study of intravenous vs oral artesunate in uncomplicated falciparum malaria. Br J Clin Pharmacol 45:123–129

    Article  PubMed  CAS  Google Scholar 

  94. Binh TQ, Ilett KF, Batty KT, Davis TM, Hung NC, Powell SM, Thu LT, Thien HV, Phuong HL, Phuong VD (2001) Oral bioavailability of dihydroartemisinin in Vietnamese volunteers and in patients with falciparum malaria. Br J Clin Pharmacol 51:541–546

    Article  PubMed  CAS  Google Scholar 

  95. Newton P, Suputtamongkol Y, Teja-Isavadharm P, Pukrittayakamee S, Navaratnam V, Bates I, White N (2000) Antimalarial bioavailability and disposition of artesunate in acute falciparum malaria. Antimicrob Agents Chemother 44:972–977

    Article  PubMed  CAS  Google Scholar 

  96. Titulaer HA, Zuidema J, Kager PA, Wetsteyn JC, Lugt CB, Merkus FW (1990) The pharmacokinetics of artemisinin after oral, intramuscular and rectal administration to volunteers. J Pharm Pharmacol 42:810–813

    Article  PubMed  CAS  Google Scholar 

  97. Karbwang J, Na-Bangchang K, Congpuong K, Molunto P, Thanavibul A (1997) Pharmacokinetics and bioavailability of oral and intramuscular artemether. Eur J Clin Pharmacol 52:307–310

    Article  PubMed  CAS  Google Scholar 

  98. Artemether-Quinine Meta-analysis Study Group (2001) A meta-analysis using individual patient data of trials comparing artemether with quinine in the treatment of severe falciparum malaria. Trans R Soc Trop Med Hyg 95:637–650

    Google Scholar 

  99. Murphy SA, Mberu E, Muhia D, English M, Crawley J, Waruiru C, Lowe B, Newton CR, Winstanley P, Marsh K et al (1997) The disposition of intramuscular artemether in children with cerebral malaria; a preliminary study. Trans R Soc Trop Med Hyg 91:331–334

    Article  PubMed  CAS  Google Scholar 

  100. Simonsson US, Jansson B, Hai TN, Huong DX, Tybring G, Ashton M (2003) Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2 C9. Clin Pharmacol Ther 74:32–43

    Article  PubMed  CAS  Google Scholar 

  101. Czock D, Markert C, Hartman B, Keller F (2009) Pharmacokinetics and pharmacodynamics of antimicrobial drugs. Expert Opin Drug Metab Toxicol 5:475–487

    Article  PubMed  CAS  Google Scholar 

  102. Gautam A, Ahmed T, Batra V, Paliwal J (2009) Pharmacokinetics and pharmacodynamics of endoperoxide antimalarials. Curr Drug Metab 10:289–306

    Article  PubMed  CAS  Google Scholar 

  103. Alin MH, Ashton M, Kihamia CM, Mtey GJ, Bjorkman A (1996) Clinical efficacy and pharmacokinetics of artemisinin monotherapy and in combination with mefloquine in patients with falciparum malaria. Br J Clin Pharmacol 41:587–592

    Article  PubMed  CAS  Google Scholar 

  104. Angus BJ, Thaiaporn I, Chanthapadith K, Suputtamongkol Y, White NJ (2002) Oral artesunate dose-response relationship in acute falciparum malaria. Antimicrob Agents Chemother 46:778–782

    Article  PubMed  CAS  Google Scholar 

  105. Li QG, Mog SR, Si YZ, Kyle DE, Gettayacamin M, Milhous WK (2002) Neurotoxicity and efficacy of arteether related to its exposure times and exposure levels in rodents. Am J Trop Med Hyg 66:516–525

    PubMed  CAS  Google Scholar 

  106. Gordi T, Lepist EI (2004) Artemisinin derivatives: toxic for laboratory animals, safe for humans? Toxicol Lett 147:99–107

    Article  PubMed  CAS  Google Scholar 

  107. Genovese RF, Newman DB, Brewer TG (2000) Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol Biochem Behav 67:37–44

    Article  PubMed  CAS  Google Scholar 

  108. Karunajeewa HA, Mueller I, Senn M, Lin E, Law I, Gomorrai PS, Oa O, Griffin S, Kotab K, Suano P et al (2008) A trial of combination antimalarial therapies in children from Papua New Guinea. N Engl J Med 359:2545–2557

    Article  PubMed  CAS  Google Scholar 

  109. Hien TT, White NJ (1993) Qinghaosu. Lancet 341:603–608

    Article  PubMed  CAS  Google Scholar 

  110. White NJ (2003) Malaria. In: Cook G, Zumla A (eds) Manson’s tropical diseases. Elsevier, Amsterdam, pp 1205–1296

    Google Scholar 

  111. Karunajeewa HA, Kemiki A, Alpers MP, Lorry K, Batty KT, Ilett KF, Davis TM (2003) Safety and therapeutic efficacy of artesunate suppositories for treatment of malaria in children in Papua New Guinea. Pediatr Infect Dis J 22:251–256

    PubMed  Google Scholar 

  112. Karunajeewa HA, Reeder J, Lorry K, Dabod E, Hamzah J, Page-Sharp M, Chiswell GM, Ilett KF, Davis TM (2006) Artesunate suppositories versus intramuscular artemether for treatment of severe malaria in children in Papua New Guinea. Antimicrob Agents Chemother 50:968–974

    Article  PubMed  CAS  Google Scholar 

  113. Borrmann S, Adegnika AA, Moussavou F, Oyakhirome S, Esser G, Matsiegui PB, Ramharter M, Lundgren I, Kombila M, Issifou S et al (2005) Short-course regimens of artesunate-fosmidomycin in treatment of uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 49:3749–3754

    Article  PubMed  CAS  Google Scholar 

  114. Price RN, Nosten F, Luxemburger C, ter Kuile FO, Paiphun L, Chongsuphajaisiddhi T, White NJ (1996) Effects of artemisinin derivatives on malaria transmissibility. Lancet 347:1654–1658

    Article  PubMed  CAS  Google Scholar 

  115. Price R, van Vugt M, Phaipun L, Luxemburger C, Simpson J, McGready R, ter Kuile F, Kham A, Chongsuphajaisiddhi T, White NJ et al (1999) Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives. Am J Trop Med Hyg 60:547–555

    PubMed  CAS  Google Scholar 

  116. Bethell D, Se Y, Lon C, Socheat D, Saunders D, Teja-Isavadharm P, Khemawoot P, Darapiseth S, Lin J, Sriwichai S et al (2010) Dose-dependent risk of neutropenia after 7-day courses of artesunate monotherapy in Cambodian patients with acute Plasmodium falciparum malaria. Clin Infect Dis 51:e105–e114

    Article  PubMed  CAS  Google Scholar 

  117. Brewer TG, Peggins JO, Grate SJ, Petras JM, Levine BS, Weina PJ, Swearengen J, Heiffer MH, Schuster BG (1994) Neurotoxicity in animals due to arteether and artemether. Trans R Soc Trop Med Hyg 88:33–36

    Article  CAS  Google Scholar 

  118. Brewer TG, Grate SJ, Peggins JO, Weina PJ, Petras JM, Levine BS, Heiffer MH, Schuster BG (1994) Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg 51:251–259

    PubMed  CAS  Google Scholar 

  119. Miller LG, Panosian CB (1997) Ataxia and slurred speech after artesunate treatment for falciparum malaria. N Engl J Med 336:1328

    Article  PubMed  CAS  Google Scholar 

  120. Toovey S, Jamieson A (2004) Audiometric changes associated with the treatment of uncomplicated falciparum malaria with co-artemether. Trans R Soc Trop Med Hyg 98:261–267

    Article  PubMed  Google Scholar 

  121. Kissinger E, Hien TT, Hung NT, Nam ND, Tuyen NL, Dinh BV, Mann C, Phu NH, Loc PP, Simpson JA et al (2000) Clinical and neurophysiological study of the effects of multiple doses of artemisinin on brain-stem function in Vietnamese patients. Am J Trop Med Hyg 63:48–55

    PubMed  CAS  Google Scholar 

  122. Davis TM, Edwards GO, McCarthy JS (1997) Artesunate and cerebellar dysfunction in falciparum malaria. N Engl J Med 337:792; author reply 793

    Google Scholar 

  123. Davis TM, Binh TQ, Ilett KF, Batty KT, Phuong HL, Chiswell GM, Phuong VD, Agus C (2003) Penetration of dihydroartemisinin into cerebrospinal fluid after administration of intravenous artesunate in severe falciparum malaria. Antimicrob Agents Chemother 47:368–370

    Article  PubMed  CAS  Google Scholar 

  124. Johann-Liang R, Albrecht R (2003) Safety evaluations of drugs containing artemisinin derivatives for the treatment of malaria. Clin Infect Dis 36:1626–1627; author reply 1627–1628

    Google Scholar 

  125. Clark RL (2009) Embryotoxicity of the artemisinin antimalarials and potential consequences for use in women in the first trimester. Reprod Toxicol 28(3):285–96

    Article  PubMed  CAS  Google Scholar 

  126. McGready R, Cho T, Keo NK, Thwai KL, Villegas L, Looareesuwan S, White NJ, Nosten F (2001) Artemisinin antimalarials in pregnancy: a prospective treatment study of 539 episodes of multidrug-resistant Plasmodium falciparum. Clin Infect Dis 33:2009–2016

    Article  PubMed  CAS  Google Scholar 

  127. Hinton RL, Auwun A, Pongua G, Oa O, Davis TM, Karunajeewa HA, Reeder JC (2007) Caregivers’ acceptance of using artesunate suppositories for treating childhood malaria in papua new Guinea. Am J Trop Med Hyg 76:634–640

    PubMed  Google Scholar 

  128. Giao PT, Binh TQ, Kager PA, Long HP, Van Thang N, Van Nam N, de Vries PJ (2001) Artemisinin for treatment of uncomplicated falciparum malaria: is there a place for monotherapy? Am J Trop Med Hyg 65:690–695

    PubMed  CAS  Google Scholar 

  129. Davis TM, Karunajeewa HA, Ilett KF (2005) Artemisinin-based combination therapies for uncomplicated malaria. Med J Aust 182:181–185

    PubMed  Google Scholar 

  130. Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N (2004) Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363:9–17

    Article  PubMed  CAS  Google Scholar 

  131. Omari AAA, Preston C, Garner PA (2005) Artemether-lumefantrine (six-dose regimen) for treating uncomplicated falciparum malaria. Cochrane Database Syst Rev CD005564

    Google Scholar 

  132. Ashley EA, Stepniewska K, Lindegardh N, Annerberg A, Kham A, Brockman A, Singhasivanon P, White NJ, Nosten F (2007) How much fat is necessary to optimize lumefantrine oral bioavailability? Trop Med Int Health 12:195–200

    Article  PubMed  CAS  Google Scholar 

  133. Juma EA, Obonyo CO, Akhwale WS, Ogutu BR (2008) A randomized, open-label, comparative efficacy trial of artemether-lumefantrine suspension versus artemether-lumefantrine tablets for treatment of uncomplicated Plasmodium falciparum malaria in children in western Kenya. Malar J 7:262

    Article  PubMed  CAS  Google Scholar 

  134. Karunajeewa H (2010) Piperaquine. In: Grayson ML (eds): Kucers’ the use of antibiotics. Hodder Education, London

    Google Scholar 

  135. Winstanley P, Newton C, Watkins W, Mberu E, Ward S, Warn P, Mwangi I, Waruiru C, Pasvol G, Warrell D et al (1993) Towards optimal regimens of parenteral quinine for young African children with cerebral malaria: the importance of unbound quinine concentration. Trans R Soc Trop Med Hyg 87:201–206

    Article  PubMed  CAS  Google Scholar 

  136. White NJ, Miller KD, Churchill FC, Berry C, Brown J, Williams SB, Greenwood BM (1988) Chloroquine treatment of severe malaria in children. Pharmacokinetics, toxicity, and new dosage recommendations. N Engl J Med 319:1493–1500

    Article  PubMed  CAS  Google Scholar 

  137. Looareesuwan S, Phillips RE, White NJ, Karbwang J, Benjasurat Y, Attanath P, Warrell DA (1985) Intravenous amodiaquine and oral amodiaquine/erythromycin in the treatment of chloroquine-resistant falciparum malaria. Lancet 2:805–808

    Article  PubMed  CAS  Google Scholar 

  138. Roche RJ, Silamut K, Pukrittayakamee S, Looareesuwan S, Molunto P, Boonamrung S, White NJ (1990) Quinine induces reversible high-tone hearing loss. Br J Clin Pharmacol 29:780–782

    Article  PubMed  CAS  Google Scholar 

  139. Krishna S, White NJ (1996) Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinet 30:263–299

    Article  PubMed  CAS  Google Scholar 

  140. Touze JE, Heno P, Fourcade L, Deharo JC, Thomas G, Bohan S, Paule P, Riviere P, Kouassi E, Buguet A (2002) The effects of antimalarial drugs on ventricular repolarization. Am J Trop Med Hyg 67:54–60

    PubMed  CAS  Google Scholar 

  141. Taylor WR, White NJ (2004) Antimalarial drug toxicity: a review. Drug Saf 27:25–61

    Article  PubMed  CAS  Google Scholar 

  142. White NJ (1994) Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg 88:S41–S43

    Article  PubMed  Google Scholar 

  143. Karbwang J, Na-Bangchang K, Tin T, Sukontason K, Rimchala W, Harinasuta T (1998) Pharmacokinetics of intramuscular artemether in patients with severe falciparum malaria with or without acute renal failure. Br J Clin Pharmacol 45:597–600

    Article  PubMed  CAS  Google Scholar 

  144. Mithwani S, Aarons L, Kokwaro GO, Majid O, Muchohi S, Edwards G, Mohamed S, Marsh K, Watkins W (2004) Population pharmacokinetics of artemether and dihydroartemisinin following single intramuscular dosing of artemether in African children with severe falciparum malaria. Br J Clin Pharmacol 57:146–152

    Article  PubMed  CAS  Google Scholar 

  145. Gomes MF, Faiz MA, Gyapong JO, Warsame M, Agbenyega T, Babiker A, Baiden F, Yunus EB, Binka F, Clerk C et al (2009) Pre-referral rectal artesunate to prevent death and disability in severe malaria: a placebo-controlled trial. Lancet 373:557–566

    Article  PubMed  CAS  Google Scholar 

  146. TDR/GEN/01.5 Special Programme for Research and Training in Tropical Diseases. 15th Programme Report. Progress 1999–2000

    Google Scholar 

  147. White NJ (1997) Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrob Agents Chemother 41:1413–1422

    PubMed  CAS  Google Scholar 

  148. Gomes M, Ribeiro I, Warsame M, Karunajeewa H, Petzold M (2008) Rectal artemisinins for malaria: a review of efficacy and safety from individual patient data in clinical studies. BMC Infect Dis 8:39

    Article  PubMed  CAS  Google Scholar 

  149. Karunajeewa HA, Ilett KF, Dufall K, Kemiki A, Bockarie M, Alpers MP, Barrett PH, Vicini P, Davis TM (2004) Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob Agents Chemother 48:2966–2972

    Article  PubMed  CAS  Google Scholar 

  150. de Ridder S, van der Kooy F, Verpoorte R (2008) Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol 120:302–314

    Article  PubMed  CAS  Google Scholar 

  151. Hommel M (2008) The future of artemisinins: natural, synthetic or recombinant? J Biol 7:38

    Article  PubMed  Google Scholar 

  152. Centre for Novel Agricultural Products DoB, University of York. The CNAP Artemisia Research Project: Project Update Number 9, May 2011. http://www.york.ac.uk/cnap/artemisaproject/pdfs/update-009.pdf. Accessed 15 May 2011

Download references

Acknowledgements

Tim Davis and Ken Ilett have been an invaluable source of information and ideas used in the writing of this chapter. Figure 2 is reproduced from Karunajeewa et al. New England Journal of Medicine, 2008, 359 (24) pp. 2545–57 [108] with the permission of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harin A. Karunajeewa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Karunajeewa, H.A. (2011). Artemisinins: Artemisinin, Dihydroartemisinin, Artemether and Artesunate. In: Staines, H., Krishna, S. (eds) Treatment and Prevention of Malaria. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0480-2_9

Download citation

Publish with us

Policies and ethics