Skip to main content

Clifford Indices for Vector Bundles on Curves

  • Conference paper

Part of the book series: Trends in Mathematics ((TM))

Abstract

For smooth projective curves of genus g ≥ 4, the Clifford index is an important invariant which provides a bound for the dimension of the space of sections of a line bundle. This is the first step in distinguishing curves of the same genus. In this paper we generalise this to introduce Clifford indices for semistable vector bundles on curves. We study these invariants, giving some basic properties and carrying out some computations for small ranks and for general and some special curves. For curves whose classical Clifford index is two, we compute all values of our new Clifford indices.

Both authors are members of the research group VBAC (Vector Bundles on Algebraic Curves). The second author would like to thank the Department Mathematik der Universität Erlangen-Nürnberg for its hospitality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Arcara: A lower bound for the dimension of the base locus of the generalized theta divisor. C. R. Math. Acad. Sci. Paris 340 (2005), no. 2, 131–134.

    MATH  MathSciNet  Google Scholar 

  2. E. Ballico: Spanned vector bundles on algebraic curves and linear series. Rend. Istit. Mat. Univ. Trieste 27 (1995), no. 1–2, 137–156 (1996).

    MATH  MathSciNet  Google Scholar 

  3. E. Ballico: Brill-Noether theory for vector bundles on projective curves. Math. Proc. Camb. Phil. Soc. 128 (1998), 483–499.

    Article  Google Scholar 

  4. P. Belkale: The strange duality conjecture for generic curves. J. Amer. Math. Soc. 21 (2008), no. 1, 235–258.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Belkale: Strange duality and the Hitchin/WZW connection. J. Diff. Geom. 82 (2009), 445–465.

    MATH  MathSciNet  Google Scholar 

  6. U.N. Bhosle, L. Brambila-Paz, P.E. Newstead: On coherent systems of type (n, d, n+1) on Petri curves. Manuscr. Math. 126 (2008), 409–441.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Brambila-Paz: Non-emptiness of moduli spaces of coherent systems. Int. J. Math. 19 (2008), 777–799.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Brambila-Paz, I. Grzegorczyk, P.E. Newstead: Geography of Brill-Noether loci for small slopes. J. Alg. Geom. 6 (1997), 645–669.

    MATH  MathSciNet  Google Scholar 

  9. L. Brambila-Paz, V. Mercat, P.E. Newstead, F. Ongay: Nonemptiness of Brill-Noether loci. Int. J. Math. 11 (2000), 737–760.

    MATH  MathSciNet  Google Scholar 

  10. L. Brambila-Paz, A. Ortega: Brill-Noether bundles and coherent systems on special curves. Moduli spaces and vector bundles, London Math. Soc. Lecture Notes Ser., 359, Cambridge Univ. Press, Cambridge, 2009, pp. 456–472.

    Google Scholar 

  11. D.C. Butler: Normal generation of vector bundles over a curve. J. Diff. Geom. 39 (1994), 1–34.

    MATH  Google Scholar 

  12. D.C. Butler: Birational maps of moduli of Brill-Noether pairs. arXiv:alg-geom/9705009v1.

    Google Scholar 

  13. S. Casalaina-Martin, T. Gwena, M. Teixidor i Bigas: Some examples of vector bundles in the base locus of the generalized theta divisor. arXiv:0707.2326v1.

    Google Scholar 

  14. C. Ciliberto: Alcuni applicazioni di un classico procedimento di Castelnuovo. Sem. di Geom., Dipart. di Matem., Univ. di Bologna, (1982–83), 17–43.

    Google Scholar 

  15. J. Cilleruelo, I. Sols: The Severi bound on sections of rank two semistable bundles on a Riemann surface. Ann. Math. 154 (2001), 739–758.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Coppens: The gonality of general smooth curves with a prescribed plane nodal model. Math. Ann. 289 (1991), 89–93.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Coppens, C. Keem, G. Martens: Primitive linear series on curves. Manuscr. Math. 77 (1992), 237–264.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Coppens, G. Martens: Linear series on 4-gonal curves. Math. Nachr. 213 (2000), 35–55.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Coppens, G. Martens: Linear series on a general k-gonal curve. Abh.Math. Sem. Univ. Hamburg 69 (1999), 347–371.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Ein, R. Lazarsfeld: Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves. London Math. Soc. Lecture Notes Ser., 179, Cambridge Univ. Press, Cambridge, 1992, pp. 149–156.

    Google Scholar 

  21. D. Eisenbud: Linear sections of determinantal varieties. Amer. J. Math. 110 (1988), 541–575.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Eisenbud, H. Lange, G. Martens, F.-O. Schreyer: The Clifford dimension of a projective curve. Comp. Math. 72 (1989), 173–204.

    MATH  MathSciNet  Google Scholar 

  23. M.L. Green: Koszul cohomology and the geometry of projective varieties. J. Differential Geom. 19 (1984), no. 1, 125–171.

    MATH  MathSciNet  Google Scholar 

  24. M.L. Green, R. Lazarsfeld: On the projective normality of complete linear series on an algebraic curve. Invent. Math. 83 (1985), no. 1, 73–90.

    Article  MathSciNet  Google Scholar 

  25. T. Gwena, M. Teixidor i Bigas: Maps between moduli spaces of vector bundles and the base locus of the theta divisor. Proc. Amer. Math. Soc. 137 (2009), no. 3, 853–861.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Kim: On the Clifford sequence of a general k-gonal curve. Indag. Mathem. 8 (1997), 209–216.

    Article  MATH  Google Scholar 

  27. H. Lange, M.S. Narasimhan: Maximal subbundles of rank two vector bundles on curves. Math. Ann. 266 (1983), 55–72.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Lange, P.E. Newstead: On Clifford’s theorem for rank-3 bundles. Rev. Mat. Iberoamericana 22 (2006), 287–304.

    MATH  MathSciNet  Google Scholar 

  29. Y. Li: Spectral curves, theta divisors and Picard bundles. Int. J. Math. 2 (1991), 525–550.

    Article  MATH  Google Scholar 

  30. A. Marian, D. Oprea: The level-rank duality for non-abelian theta functions. Invent. Math. 168 (2007), no. 2, 225–247.

    Article  MATH  MathSciNet  Google Scholar 

  31. G. Martens, F.-O. Schreyer: Line bundles and syzygies of trigonal curves. Abh. Math. Sem. Univ. Hamburg 56 (1986), 169–189.

    Article  MATH  MathSciNet  Google Scholar 

  32. V. Mercat: Le problème de Brill-Noether pour des fibrés stables de petite pente. J. reine angew. Math. 506 (1999), 1–41.

    MATH  MathSciNet  Google Scholar 

  33. V. Mercat: Fibrés stables de pente 2. Bull. London Math. Soc. 33 (2001), 535–542.

    Article  MATH  MathSciNet  Google Scholar 

  34. V. Mercat: Clifford’s theorem and higher rank vector bundles. Int. J. Math. 13 (2002), 785–796.

    Article  MATH  MathSciNet  Google Scholar 

  35. K. Paranjape, S. Ramanan: On the canonical ring of a curve. Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata (1987), 503–516.

    Google Scholar 

  36. M. Popa: On the base locus of the generalized theta divisor. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 6, 507–512.

    MATH  Google Scholar 

  37. M. Popa, M. Roth: Stable maps and Quot schemes. Invent. Math. 152 (2003), no. 3, 625–663.

    Article  MATH  MathSciNet  Google Scholar 

  38. R. Re: Multiplication of sections and Clifford bounds for stable vector bundles on curves. Comm. in Alg. 26 (1998), 1931–1944.

    Article  MATH  MathSciNet  Google Scholar 

  39. O. Schneider: Sur la dimension de l’ensemble des points base du fibré déterminant sur SU C >(r). Ann. Inst. Fourier (Grenoble) 57 (2007), no. 2, 481–490.

    MATH  Google Scholar 

  40. X.-J. Tan: Clifford’s theorems for vector bundles. Acta Math. Sin. 31 (1988), 710–720.

    MATH  Google Scholar 

  41. M. Teixidor i Bigas: Brill-Noether theory for stable vector bundles. Duke Math. J. 62 (1991), 385–400.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Teixidor i Bigas: Rank two vector bundles with canonical determinant. Math. Nachr. 265 (2004), 100–106.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Teixidor i Bigas: Petri map for rank two vector bundles with canonical determinant. Compos. Math. 144 (2008), 705–720.

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Teixidor i Bigas: Syzygies using vector bundles. Trans. Amer. Math. Soc. 359 (2007), no. 2, 897–908.

    Article  MATH  MathSciNet  Google Scholar 

  45. C. Voisin: Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri. Acta Math. 168 (1992), 249–272.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this paper

Cite this paper

Lange, H., Newstead, P.E. (2010). Clifford Indices for Vector Bundles on Curves. In: Schmitt, A. (eds) Affine Flag Manifolds and Principal Bundles. Trends in Mathematics. Springer, Basel. https://doi.org/10.1007/978-3-0346-0288-4_6

Download citation

Publish with us

Policies and ethics