Skip to main content

Affine Springer Fibers and Affine Deligne-Lusztig Varieties

  • Conference paper
Book cover Affine Flag Manifolds and Principal Bundles

Part of the book series: Trends in Mathematics ((TM))

Abstract

We give a survey on the notion of affine Grassmannian, on affine Springer fibers and the purity conjecture of Goresky, Kottwitz, and MacPherson, and on affine Deligne-Lusztig varieties and results about their dimensions in the hyperspecial and Iwahori cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Abramenko, K. Brown, Buildings, Springer Graduate Texts in Mathematics 248, 2008.

    Google Scholar 

  2. M. Artin, Grothendieck topologies, Seminar notes, Harvard University 1962.

    Google Scholar 

  3. V. Baranovsky, V. Ginzburg, Conjugacy classes in loop groups and G-bundles on elliptic curves, Int. Math. Res. Not. 1996, no. 15, 733–751.

    Google Scholar 

  4. A. Beauville, Y. Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), no. 2, 385–419.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Beauville, Y. Laszlo, Un lemme de descente, C. R. A. S. 320 (1995), no. 3, 335–340.

    MATH  MathSciNet  Google Scholar 

  6. E.T. Beazley, Codimensions of Newton strata for SL3(F) in the Iwahori case, Math. Z. 263 (2009), 499–540.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, Preprint, available at http://www.math.uchicago.edu/∼mitya/langlands.html

    Google Scholar 

  8. K. Behrend, The Lefschetz trace formula for algebraic stacks, Invent. math. 112 (1993), 127–149.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Bezrukavnikov, The dimension of the fixed point set on affine flag manifolds, Math. Res. Lett. 3 (1996), 185–189.

    MATH  MathSciNet  Google Scholar 

  10. C. Bonnafé, R. Rouquier, On the irreducibility of Deligne-Lusztig varieties, C.R.A.S. 343 (2006), 37–39.

    MATH  Google Scholar 

  11. A. Borel, Linear Algebraic Groups, Springer Graduate Text in Mathematics 126, 1991.

    Google Scholar 

  12. N. Bourbaki, Algèbre commutative, Chapitres 1 à 4, Masson 1985.

    Google Scholar 

  13. X. Caruso, Dimension de certaines variétés de Deligne-Lusztig affines généralisées, Preprint 2008, http://perso.univ-rennes1.fr/xavier.caruso/articles/dimension.pdf

    Google Scholar 

  14. C.-L. Chai, Newton polygons as lattice points, Amer. J. Math. 122 (2000), no. 5, 967–990.

    Article  MATH  MathSciNet  Google Scholar 

  15. P.H. Chaudouard, G. Laumon, Sur l’homologie des fibres de Springer affines tronquées, Duke Math. J. 145, no. 3 (2008), 443–535.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.F. Dat, Lemme fondamental et endoscopie, une approche géométrique (d’après Gérard Laumon et Ngô Báo Châu), Séminaire Bourbaki 2004/2005. Astérisque 307 (2006), Exposé 940, 71–112.

    Google Scholar 

  17. J.F. Dat, Ngo Dac T., Lemme fondamental pour les algèbres de Lie (d’après Ngô Bao-Châu), Preprint, available at http://people.math.jussieu.fr/∼dat/recherche/publis/proj_livre.pdf

    Google Scholar 

  18. P. Deligne, G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103–161.

    Article  MathSciNet  Google Scholar 

  19. M. Demazure, Lectures on p-divisible groups, Springer Lecture Notes in Mathematics 302 (1972).

    Google Scholar 

  20. V. Drinfeld, Infinite-dimensional vector bundles in algebraic geometry (an introduction), in: The unity of mathematics, Progr. Math. 244, Birkhäuser 2006, 263–304.

    Article  MathSciNet  Google Scholar 

  21. G. Faltings, Algebraic loop groups and moduli spaces of bundles, J. Europ. Math. Soc. 5 (2003), 41–68.

    Article  MATH  MathSciNet  Google Scholar 

  22. P. Garrett, Buildings and classical groups, Chapman and Hall 1997.

    Google Scholar 

  23. Q. Gashi, On a conjecture of Kottwitz and Rapoport, Preprint arXiv:0805.4575v2 (2008).

    Google Scholar 

  24. S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics 1371, Springer-Verlag, 1989.

    Google Scholar 

  25. U. Görtz, On the connectedness of Deligne-Lusztig varieties, Represent. Theory 13 (2009), 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  26. U. Görtz, T. Haines, R. Kottwitz, D. Reuman, Dimensions of some affine Deligne-Lusztig varieties, Ann. sci. École Norm. Sup. 4e série, t. 39 (2006), 467–511.

    MATH  Google Scholar 

  27. U. Görtz, T. Haines, R. Kottwitz, D. Reuman, Affine Deligne-Lusztig varieties in affine flag varieties, Preprint arXiv:math/0805.0045v2 (2008).

    Google Scholar 

  28. U. Görtz, X. He, Dimension of affine Deligne-Lusztig varieties in affine flag varieties, in preparation.

    Google Scholar 

  29. U. Görtz, C.-F. Yu, Supersingular Kottwitz-Rapoport strata and Deligne-Lusztig varieties, to appear in J. Inst. Math. Jussieu, arXiv:math/0802.3260v2.

    Google Scholar 

  30. M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. math. 131 (1998), 25–83.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Goresky, R. Kottwitz, R. MacPherson, Homology of affine Springer fibers in the unramified case, Duke Math. J. 121 (2004), 509–561.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Goresky, R. Kottwitz, R. MacPherson, Purity of equivalued affine Springer fibers, Represent. Theory 10 (2006), 130–146.

    Article  MATH  MathSciNet  Google Scholar 

  33. T. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, in: Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, Amer. Math. Soc. 2005, 583–642.

    MathSciNet  Google Scholar 

  34. T. Haines, M. Rapoport, On parahoric subgroups, Appendix to [63], Adv. in Math. 219 (2008), 188–198.

    MathSciNet  Google Scholar 

  35. T. Hales, A statement of the fundamental lemma, in: Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, Amer. Math. Soc. 2005, 643–658.

    Google Scholar 

  36. U. Hartl, E. Viehmann, The Newton stratification on deformations of local G-shtuka, Preprint arXiv:0810.0821v2.

    Google Scholar 

  37. X. He, Minimal length elements in conjugacy classes of extended affine Weyl groups, in preparation.

    Google Scholar 

  38. X. He, A class of equivariant sheaves on some loop groups, in preparation.

    Google Scholar 

  39. R. Hotta, N. Shimomura, The fixed-point subvarieties of unipotent transformations on generalized flag varieties and the Green functions, Math. Ann. 241, no. 3 (1979), 193–208.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Ivanov, The cohomology of the affine Deligne-Lusztig varieties in the affine flag manifold of GL2, Diploma thesis Bonn 2009.

    Google Scholar 

  41. D. Kazhdan, G. Lusztig, Fixed point varieties on affine flag manifolds, Isr. J. Math. 62, no. 2, (1988), 129–168.

    Article  MATH  MathSciNet  Google Scholar 

  42. D. Kazhdan, Y. Varshavsky, On endoscopic decomposition of certain depth zero representations, in: Studies in Lie theory, Progr. Math. 243, Birkhäuser 2006, 223–301.

    Google Scholar 

  43. K. Kedlaya, The algebraic closure of the power series field in positive characteristic, Proc. Amer. Math. Soc. 129, no. 12 (2001), 3461–3470.

    Article  MATH  MathSciNet  Google Scholar 

  44. R. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), 201–220.

    MATH  MathSciNet  Google Scholar 

  45. R. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255–339.

    Article  MATH  MathSciNet  Google Scholar 

  46. R. Kottwitz, On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not. 26 (2003), 1433–1447.

    Article  MathSciNet  Google Scholar 

  47. R. Kottwitz, Dimensions of Newton strata in the adjoint quotient of reductive groups, Pure Appl. Math. Q. 2 (2006), no. 3, 817–836.

    MATH  MathSciNet  Google Scholar 

  48. R. Kottwitz, M. Rapoport, On the existence of F-crystals, Comment. Math. Helv. 78 (2003), no. 1, 153–184.

    MATH  MathSciNet  Google Scholar 

  49. S. Kumar, Infinite Grassmannians and moduli spaces of G-bundles, in: Vector bundles on curves — new directions (Cetraro, 1995), Lecture Notes in Mathematics 1649, Springer 1997, 1–49.

    Article  Google Scholar 

  50. R. Langlands, D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), 219–271.

    Article  MATH  MathSciNet  Google Scholar 

  51. G. Laumon, Sur le lemme fondamental pour les groupes unitaires, Preprint math.AG/0212245 (2002).

    Google Scholar 

  52. G. Laumon, Aspects géométriques du Lemme Fondamental de Langlands-Shelstad, in: Proc. ICM Madrid 2006, Vol. II, Eur. Math. Soc., 2006, 401–419.

    Google Scholar 

  53. G. Laumon, B.C. Ngô, Le lemme fondamental pour les groupes unitaires, Ann. of Math. (2) 168 (2008), no. 2, 477–573.

    Article  MATH  MathSciNet  Google Scholar 

  54. G. Laumon, M. Rapoport, A geometric approach to the fundamental lemma for unitary groups, Preprint math.AG/9711021 (1997).

    Google Scholar 

  55. C. Lucarelli, A converse to Mazur’s inequality for split classical groups, J. Inst. Math. Jussieu 3 (2004), no. 2, 165–183.

    Article  MATH  MathSciNet  Google Scholar 

  56. V. Lucarelli, Affine pavings for affine Springer fibers for split elements in PGL(3), math.RT/0309132 (2003).

    Google Scholar 

  57. G. Lusztig, Some remarks on the supercuspidal representations of p-adic semisimple groups, in: Automorphic forms, representations and L-functions, Proc. Symp. Pure Math. 33 Part 1 (Corvallis 1977), Amer. Math. Soc. 1979, 171-175.

    Google Scholar 

  58. E. Mantovan, On the cohomology of certain PEL type Shimura varieties, Duke Math. J. 129 (3) (2005), 573–610.

    Article  MATH  MathSciNet  Google Scholar 

  59. E. Mantovan, E. Viehmann, On the Hodge-Newton filtration for p-divisible O-modules, to appear in Math. Z., arXiv:0701.4194 (2007).

    Google Scholar 

  60. B.C. Ngô, Fibration de Hitchin et structure endoscopique de la formule des traces, Proc. ICM Madrid, Vol. II, Eur. Math. Soc. (2006), 1213–1225.

    Google Scholar 

  61. B.C. Ngô, Le lemme fondamental pour les algèbres de Lie, Preprint arXiv:0801.0446v3 (2008).

    Google Scholar 

  62. B.C. Ngô, P. Polo, Résolutions de Demazure affines et formule de Casselman-Shalika géométrique, J. Algebraic Geom. 10 (2001), no. 3, 515–547.

    MATH  MathSciNet  Google Scholar 

  63. G. Pappas, M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), no. 1, 118–198.

    Article  MATH  MathSciNet  Google Scholar 

  64. M. Rapoport, A guide to the reduction modulo p of Shimura varieties, Astérisque (2005), no. 298, 271–318.

    Google Scholar 

  65. M. Rapoport, M. Richartz, On the classification and specialization of F-isocrystals with additional structure, Compositio Math. 103 (1996), 153–181.

    MATH  MathSciNet  Google Scholar 

  66. M. Rapoport, Th. Zink, Period spaces for p-divisible groups, Ann. Math. Studies 141, Princeton Univ. Press 1996.

    Google Scholar 

  67. M. Rapoport, Th. Zink, A finiteness theorem in the Bruhat-Tits building: an application of Landvogt’s embedding theorem, Indag. Mathem. N. S. 10 3 (1999), 449–458.

    Article  MATH  MathSciNet  Google Scholar 

  68. D. Reuman, Determining whether certain affine Deligne-Lusztig sets are non-empty, Thesis Chicago 2002, math.NT/0211434.

    Google Scholar 

  69. D. Reuman, Formulas for the dimensions of some affine Deligne-Lusztig varieties, Michigan Math. J. 52 (2004), no. 2, 435–451.

    Article  MATH  MathSciNet  Google Scholar 

  70. R. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38–41.

    Article  MATH  MathSciNet  Google Scholar 

  71. N. Shimomura, A theorem on the fixed point set of a unipotent transformation on the affine flag manifold, J. Math. Soc. Japan 32, no. 1 (1980), 55–64.

    Article  MathSciNet  Google Scholar 

  72. N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics 946, Springer 1982.

    Google Scholar 

  73. L. Spice, Topological Jordan decompositions, J. Alg. 319 (2008), 3141–3163.

    MATH  MathSciNet  Google Scholar 

  74. T. Springer, On representations of Weyl groups, in: Proc. Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan (1991), 517–536.

    Google Scholar 

  75. Ch. Sorger, Lectures on moduli of principal G-bundles over algebraic curves, in: Proc. School on Algebraic Geometry (Trieste, 1999), ICTP Lect. Notes 1 (2000), 1–57.

    Google Scholar 

  76. J. Tymoczko, An introduction to equivariant cohomology and homology, following Goresky, Kottwitz, and MacPherson, in: Snowbird Lectures on Algebraic Geometry, ed. R. Vakil, Contemp. Math. 388, Amer. Math. Soc. 2005, 169-188.

    Google Scholar 

  77. E. Viehmann. The dimension of affine Deligne-Lusztig varieties, Ann. sci. école Norm. Sup. 4e série, t. 39 (2006), 513–526.

    MATH  MathSciNet  Google Scholar 

  78. E. Viehmann, Connected components of closed affine Deligne-Lusztig varieties, Math. Ann. 340, no. 2 (2008), 315–333.

    Article  MATH  MathSciNet  Google Scholar 

  79. E. Viehmann, Moduli spaces of p-divisible groups, J. Alg. Geom. 17 (2008), 341–374.

    MATH  MathSciNet  Google Scholar 

  80. E. Viehmann, Moduli spaces of polarized p-divisible groups, Documenta Math. 13 (2008), 825–852.

    MATH  MathSciNet  Google Scholar 

  81. E. Viehmann, Truncations of level 1 of elements in the loop group of a reductive group, Preprint arXiv:0907.2331v1 (2009).

    Google Scholar 

  82. B. Zbarsky, On some stratifications of affine Deligne-Lusztig varieties for SL3, Preprint arXiv:0906.0186v1 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this paper

Cite this paper

Görtz, U. (2010). Affine Springer Fibers and Affine Deligne-Lusztig Varieties. In: Schmitt, A. (eds) Affine Flag Manifolds and Principal Bundles. Trends in Mathematics. Springer, Basel. https://doi.org/10.1007/978-3-0346-0288-4_1

Download citation

Publish with us

Policies and ethics