Skip to main content

ECIRS: Access Creation

  • Chapter
  • First Online:
  • 960 Accesses

Abstract

A suitable percutaneous access is the key point of the success of any PNL, maximizing the effectiveness of the procedure in terms of stone-free status and minimizing the risk of complications. The selection of the best calyx of entry should be preoperatively planned, to define the better strategy for a definite patient with a given urolithiasis. The first operative step of ECIRS (preliminary flexible ureteroscopy) has a fundamental diagnostic importance for defining stone and collecting system features impossible to define by means of any preoperative investigation. Renal puncture and tract dilation modalities are discussed. Fluoroscopy and ultrasound guidance, and Endovision control of the supine renal puncture are described and other guidance methods considered (retrograde nephrostomy application, all-seeing needle, image-fusion and iPad guidance, electromagnetic tracking system, navigation systems, and telerobotic arms). Guidewire application and management and tract dilation-related problems are afforded, according to the authors’ expertise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ritter M, Krombach P, Michel MS (2011) Percutaneous stone removal. Eur Urol Suppl 10:433–439

    Article  Google Scholar 

  2. Miller NL, Matlaga BR, Lingeman JE (2007) Techniques for fluoroscopic percutaneous renal access. J Urol 178:15–23

    Article  PubMed  Google Scholar 

  3. De La Rosette J, Assimos D, Desai M et al (2011) The Clinical Research Office of the Endourological Society percutaneous nephrolithotomy global study: indications, complications, and outcomes in 5803 patients. J Endourol 25:11–17

    Article  PubMed  Google Scholar 

  4. Spann A, Poteet J, Hyatt D et al (2011) Safe and effective obtainment of access for percutaneous nephrolithotomy by urologists: the Louisiana State University experience. J Endourol 25:1421–1425

    Article  PubMed  Google Scholar 

  5. Watterson JD, Soon S, Jana K (2006) Access related complications during percutaneous nephrolithotomy: urology versus radiology at a single academic institution. J Urol 176:142–145

    Article  PubMed  Google Scholar 

  6. Tomaszewski JJ, Ortiz TD, Gayed BA et al (2010) Renal access by urologist or radiologist during percutaneous nephrolithotomy. J Endourol 24:1733–1737

    Article  PubMed  Google Scholar 

  7. Lang E, Thomas R, Davis R et al (2009) Risks, advantages, and complications of intercostal versus subcostal approach for percutaneous nephrolithotripsy. Urology 74:751–755

    Article  PubMed  Google Scholar 

  8. Soria F, Delgado MI, Sanchez FM et al (2009) Effectiveness of three-dimensional fluoroscopy in percutaneous nephrostomy: an animal model study. Urology 73:649–652

    Article  PubMed  Google Scholar 

  9. Steinberg PL, Semins MJ, Wason SE et al (2009) Fluoroscopy-guided percutaneous renal access. J Endourol 23:1627–1631

    Article  PubMed  Google Scholar 

  10. Hoznek A, Ouzaid I, Gettman M et al (2011) Fluoroscopy-guided renal access in supine percutaneous nephrolithotomy. Urology 78:221–224

    Article  PubMed  Google Scholar 

  11. Desai M (2009) Ultrasonography-guided punctures – with and without puncture guide. J Endourol 23:1641–1643

    Article  PubMed  Google Scholar 

  12. Basiri A, Mohammadi Sichani M, Hosseini SR et al (2010) X-ray-free percutaneous nephrolithotomy in supine position with ultrasound guidance. World J Urol 28:239–244

    Article  PubMed  Google Scholar 

  13. Hopper KD, Sherman JL, Luethke JM et al (1987) The retrorenal colon in the supine and prone patient. Radiology 162:443–446

    PubMed  CAS  Google Scholar 

  14. Tuttle DN, Yeh BM, Meng MV et al (2005) Risk of injury to adjacent organs with lower-pole fluoroscopically guided percutaneous nephrostomy: evaluation with prone, supine, and multiplanar reformatted CT. J Vasc Interv Radiol 16:1489–1492

    Article  PubMed  Google Scholar 

  15. Brancaforte A, Serantoni S, Silva Barbosa F et al (2011) Renal volume assessment with 3D ultrasound. Radiol Med 116:1095–1104

    Article  PubMed  CAS  Google Scholar 

  16. Tranquart F, Mercier L, Frinking P et al (2012) Perfusion quantification in contrast-enhanced ultrasound (CEUS) – ready for research projects and routine clinical use. Ultraschall Med 33(Suppl 1):S31–S38

    PubMed  Google Scholar 

  17. Khan F, Borin JF, Pearle MS et al (2006) Endoscopically guided percutaneous renal access: seeing is believing. J Endourol 20:451–455

    Article  PubMed  Google Scholar 

  18. Scoffone CM, Cracco CM, Cossu M et al (2008) Endoscopic combined intrarenal surgery in Galdakao-modified supine Valdivia position: a new standard for percutaneous nephrolithotomy? Eur Urol 54:1393–1403

    Article  PubMed  Google Scholar 

  19. Bader MJ, Gratzke C, Seitz M et al (2011) The “all-seeing needle”: initial results of an optical puncture system confirming access in percutaneous nephrolithotomy. Eur Urol 59:1054–1059

    Article  PubMed  Google Scholar 

  20. Kawahara T, Ito H, Terao H et al (2012) Ureteroscopy assisted retrograde nephrostomy: a new technique for percutaneous nephrolithotomy. BJU Int 110:588–590

    Article  PubMed  Google Scholar 

  21. Wynberg JB, Borin JF, Vicena JZ et al (2012) Flexible-ureteroscopy-directed retrograde nephrostomy for percutaneous nephrolithotomy: description of a technique. J Endourol 26:1268–1274

    Article  PubMed  Google Scholar 

  22. Kawahara T, Ito H, Terao H et al (2012) Effectiveness of ureteroscopy-assisted retrograde nephrostomy (UARN) for percutaneous nephrolithotomy (PCNL). PLoS ONE 7:e52149. doi:10.1371/journal.pone.0052149

    Article  PubMed  CAS  Google Scholar 

  23. Kalogeropoulou C, Kallidonis P, Liatsikos EN (2009) Imaging in percutaneous nephrolithotomy. J Endourol 23:1571–1577

    Article  PubMed  Google Scholar 

  24. Chen ML, Shukla G, Jackman SV et al (2011) Real-time tomographic reflection in facilitating percutaneous access to the renal collecting system. J Endourol 25:743–745

    Article  PubMed  Google Scholar 

  25. Ritter M, Rassweiler MC, Haecker A, Michel MS (2013) Laser-guided percutaneous kidney access with the UroDyna-CT: first experience of three-dimensional puncture planning with an ex-vivo model. World J Urol 31:1147–1151

    Google Scholar 

  26. Appelbaum L, Solbiati L, Sosna J et al (2013) Evaluation of an electromagnetic image-fusion navigation system for biopsy of small lesions: assessment of accuracy in an in vivo swine model. Acad Radiol 20:209–217

    Article  PubMed  Google Scholar 

  27. Mueller M, Rassweiler MC, Klein J et al (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radio Surg 8:663–675

    Google Scholar 

  28. De Lima REA, Oliveira C, Rodrigues P et al (2013) Percutaneous renal collecting system access using a novel electromagnetic tracking: first experience in vivo pig model. Eur Urol Suppl 12:e968

    Article  Google Scholar 

  29. Lazarus J, Willams J (2011) The Locator: novel percutaneous nephrolithotomy apparatus to aid collecting system puncture – a preliminary report. J Endourol 25:747–750

    Article  PubMed  Google Scholar 

  30. Challacombe B, Patriciu A, Glass J et al (2005) A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithototomy. Comput Aided Surg 10:165–171

    PubMed  Google Scholar 

  31. Bruyère F, Ayoub J, Arbeille P (2011) Use of a telerobotic arm to perform ultrasound guidance during renal biopsy in transplant recipients: a preliminary study. J Endourol 25:231–234

    Article  PubMed  Google Scholar 

  32. Landman J, Venkatesh R, Ragab M et al (2002) Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling ureteral catheter, ureteral occlusion balloon, and ureteral access sheath. Urology 60:584–587

    Article  PubMed  Google Scholar 

  33. Landman J, Venkatesh R, Lee DL et al (2003) Combined percutaneous and retrograde approach to staghorn calculi with application of the ureteral access sheath to facilitate percutaneous nephrolithotomy. J Urol 169:64–67

    Article  PubMed  Google Scholar 

  34. Marguet CG, Springhart WP, Tan YH et al (2005) Simultaneous combined use of flexible ureteroscopy and percutaneous nephrolithotomy to reduce the number of access tracts in the management of complex renal calculi. BJU Int 96:1097–1100

    Article  PubMed  Google Scholar 

  35. Williams SK, Leveillee RJ (2008) Management of staghorn calculus: single puncture with judicious use of the flexible nephroscope. Curr Opin Urol 18:224–228

    Article  PubMed  Google Scholar 

  36. Akman T, Binbay M, Sari E et al (2011) Factors affecting bleeding during percutaneous nephrolithotomy: single surgeon experience. J Endourol 25:327–333

    Article  PubMed  Google Scholar 

  37. Alken P (1981) Telescopbougierset zur perkutanen Nephrostomie. Aktuel Urol 12:216–219

    Article  Google Scholar 

  38. Clayman RV, Castaneda-Zuniga WR, Hunter DW et al (1983) Rapid balloon dilatation of the nephrostomy track for nephrostolithotomy. Radiology 147:884–885

    PubMed  CAS  Google Scholar 

  39. Frattini A, Barbieri A, Salsi P et al (2001) One shot: a novel method to dilate the nephrostomy access for percutaneous nephrolithotripsy. J Endourol 15:919–923

    Article  PubMed  CAS  Google Scholar 

  40. Rusnak B, Castaneda-Zuniga W, Kotula F et al (1982) An improved dilator system for percutaneous nephrostomies. Radiology 144:174

    PubMed  CAS  Google Scholar 

  41. Gonen M, Istanbulluoglu OM, Cicek T et al (2008) Balloon dilatation versus Amplatz dilatation for nephrostomy tract dilatation. J Endourol 22:901–904

    Article  PubMed  Google Scholar 

  42. Yamaghuci A, Skolarikos A, Buchholz NPN et al (2011) Operating times and bleeding complications in percutaneous nephrolithotomy: a comparison of tract dilation methods in 5537 patients in the Clinical Research Office of the Endourological Society percutaneous nephrolithotomy global study. J Endourol 25:933–939

    Article  Google Scholar 

  43. Aminsharifi A, Alavi M, Sadeghi G et al (2011) Renal parenchymal damage after percutaneous nephrolithotomy with one-stage tract dilation technique: a randomized clinical trial. J Endourol 25:927–931

    Article  PubMed  Google Scholar 

  44. Handa RK, Evan AP, Willis LR et al (2009) Renal functional effects of multiple-tract percutaneous access. J Endourol 23:1951–1956

    Article  PubMed  Google Scholar 

  45. Chan DY, Jarrett TW (2000) Mini-percutaneous nephrolithotomy. J Endourol 14:269–273

    Article  PubMed  CAS  Google Scholar 

  46. Lahme S, Bichler KH, Strohmaier WL, Gotz T (2001) Minimally invasive PCNL in patients with renal pelvic and calyceal stones. Eur Urol 40:619–624

    Google Scholar 

  47. Giusti G, Piccinelli A, Taverna G et al (2007) Miniperc? No, thank you! Eur Urol 51:810–814

    Article  PubMed  Google Scholar 

  48. Abdelhafez MF, Amend B, Bedke J et al (2013) Minimally invasive percutaneous nephrolithotomy: a comparative study of the management of small and large renal stones. Urology 81:241–245

    Article  PubMed  Google Scholar 

  49. Clayman RV (2000) Nephroscopy sheath characteristics and intrarenal pressure: human kidney model. J Urol 163:1616

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Marco Scoffone MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Scoffone, C.M., Hoznek, A., Cracco, C.M. (2014). ECIRS: Access Creation. In: Scoffone, C., Hoznek, A., Cracco, C. (eds) Supine Percutaneous Nephrolithotomy and ECIRS. Springer, Paris. https://doi.org/10.1007/978-2-8178-0459-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0459-0_13

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0359-3

  • Online ISBN: 978-2-8178-0459-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics