Skip to main content

Adipocyte Lipid Droplet Physiology

  • Chapter
  • First Online:
  • 2420 Accesses

Abstract

Cytoplasmic lipid droplets are now recognized as dynamic and regulated intracellular organelles that play active role in fatty acid storage and mobilization. This chapter briefly summarizes present knowledge on lipid droplet lifetime, and gives a special emphasis on adipocyte lipid droplets. Their uniqueness and specific properties are discussed as well as their role and potential interests in metabolic diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arner P, Bernard S, Salehpour M et al (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478:110–113

    Article  PubMed  CAS  Google Scholar 

  • Baerga R, Zhang Y, Chen PH et al (2009) Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5:1118–1130

    Article  PubMed  CAS  Google Scholar 

  • Bell M, Wang H, Chen H et al (2008) Consequences of lipid droplet coat protein downregulation in liver cells: abnormal lipid droplet metabolism and induction of insulin resistance. Diabetes 57:2037–2045

    Article  PubMed  CAS  Google Scholar 

  • Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440

    Article  PubMed  CAS  Google Scholar 

  • Blanchette-Mackie EJ, Dwyer NK, Barber T et al (1995) Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 36:1211–1226

    PubMed  CAS  Google Scholar 

  • Blouin CM, Le Lay S, Lasnier F et al (2008) Regulated association of caveolins to lipid droplets during differentiation of 3T3-L1 adipocytes. Biochem Biophys Res Commun 376:331–335

    Article  PubMed  CAS  Google Scholar 

  • Blouin CM, Le Lay S, Eberl A et al (2010) Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects. J Lipid Res 51:945–956

    Article  PubMed  CAS  Google Scholar 

  • Boström P, Andersson L, Rutberg M et al (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 9:1286–1293

    Article  PubMed  Google Scholar 

  • Boulant S, Douglas MW, Moody L et al (2008) Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule- and dynein-dependent manner. Traffic 9:1268–1282

    Article  PubMed  CAS  Google Scholar 

  • Bourez S, Le Lay S, Van Den Daelen C et al (2012) Accumulation of polychlorinated biphenyls in adipocytes: selective targetting to lipid droplets and role of caveolin-1. PLoS One. 7:e31834

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL, Barber T, Wolins NE et al (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–2263

    PubMed  CAS  Google Scholar 

  • Brasaemle DL, Rubin B, Harten IA et al (2000) Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem 275:38486–38493

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842

    Article  PubMed  CAS  Google Scholar 

  • Chun TH, Hotary KB, Sabeh F et al (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125:577–591

    Article  PubMed  CAS  Google Scholar 

  • Dalen KT, Schoonjans K, Ulven SM et al (2004) Adipose tissue expression of the lipid droplet-associating proteins S3–12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes 53:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Danesch U, Hoeck W, Ringold GM (1992) Cloning and transcriptional regulation of a novel adipocyte-specific gene, FSP27. CAAT-enhancer-binding protein (C/EBP) and C/EBP-like proteins interact with sequences required for differentiation-dependent expression. J Biol Chem 267:7185–7193

    PubMed  CAS  Google Scholar 

  • Deram S, Nicolau CY, Perez-Martinez P et al (2008) Effects of perilipin (PLIN) gene variation on metabolic syndrome risk and weight loss in obese children and adolescents. J Clin Endocrinol Metab 93:4933–4940

    Article  PubMed  CAS  Google Scholar 

  • Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Hergt M, Grund C (1987) Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 49:131–141

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Kogo H, Ishiguro K et al (2001) Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol 152:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Gandotra S, Le Dour C, Bottomley W et al (2011) Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med 364:740–748

    Article  PubMed  CAS  Google Scholar 

  • Goodman JM (2008) The gregarious lipid droplet. J Biol Chem 283:28005–28009

    Article  PubMed  CAS  Google Scholar 

  • Greenberg AS, Egan JJ, Wek SA et al (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346

    PubMed  CAS  Google Scholar 

  • Grillitsch K, Connerth M, Kofeler H et al (2011) Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets Proteome. Biochim Biophys Acta 1811:1165–1176

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Walther TC, Rao M et al (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661

    Article  PubMed  CAS  Google Scholar 

  • Keller P, Petrie JT, De Rose P et al (2008) Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem 283:14355–14365

    Article  PubMed  CAS  Google Scholar 

  • Kim CA, Delepine M, Boutet E et al (2008) Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab 93:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Marchand P, Henegar C et al (2011) Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ Health Perspect 119:377–383

    Article  PubMed  CAS  Google Scholar 

  • Kimmel AR, Brasaemle DL, McAndrews-Hill M et al (2010) Adoption of Perilipin as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51:468–471

    Article  PubMed  CAS  Google Scholar 

  • Krahmer N, Guo Y, Wilfling F et al (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP: phosphocholine cytidylyltransferase. Cell Metab 14:504–515

    Article  PubMed  CAS  Google Scholar 

  • Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9:338–352

    Article  PubMed  CAS  Google Scholar 

  • Le Lay S, Hajduch E, Lindsay MR et al (2006) Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7:549–561

    Article  PubMed  Google Scholar 

  • Le Lay S, Blouin CM, Hajduch E, Dugail I (2009) Filling up adipocytes with lipids. Lessons from caveolin-1 deficiency. Biochim Biophys Acta 1791:514–518

    Article  PubMed  Google Scholar 

  • Le Lay S, Briand N, Blouin CM et al (2010) The lipoatrophic caveolin-1 deficient mouse model reveals autophagy in mature adipocytes. Autophagy 6:754–763

    Article  PubMed  Google Scholar 

  • Liang L, Zhao M, Xu Z et al (2003) Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J 370:195–203

    Article  PubMed  CAS  Google Scholar 

  • Marcinkiewicz A, Gauthier D, Garcia A, Brasaemle DL (2006) The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. J Biol Chem 281:11901–11909

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7:373–378

    Article  PubMed  CAS  Google Scholar 

  • Matsusue K, Kusakabe T, Noguchi T et al (2008) Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 7:02–311

    Article  Google Scholar 

  • Miyanari Y, Atsuzawa K, Usuda N et al (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097

    Article  PubMed  CAS  Google Scholar 

  • Moessinger C, Kuerschner L, Spandl J et al (2011) Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J Biol Chem 286:21330–21339

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24:109–115

    Article  PubMed  CAS  Google Scholar 

  • Murphy S, Martin S, Parton RG (2009) Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta 1791:441–447

    Article  PubMed  CAS  Google Scholar 

  • Murphy S, Martin S, Parton RG (2010) Quantitative analysis of lipid droplet fusion: inefficient steady state fusion but rapid stimulation by chemical fusogens. PLoS One 5:e15030

    Article  PubMed  CAS  Google Scholar 

  • Nishino N, Tamori Y, Tateya S et al (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118:2808–2821

    PubMed  CAS  Google Scholar 

  • Ohsaki Y, Cheng J, Suzuki M et al (2009) Biogenesis of cytoplasmic lipid droplets: from the lipid ester globule in the membrane to the visible structure. Biochim Biophys Acta 1791:399–407

    Article  PubMed  CAS  Google Scholar 

  • Ost A, Ortegren U, Gustavsson J et al (2005) Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J Biol Chem 280:5–8

    PubMed  Google Scholar 

  • Ostermeyer AG, Paci JM, Zeng Y et al (2001) Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J Cell Biol 152:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Ouimet M, Franklin V, Mak E et al (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13:655–667

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Molero JC, Floetenmeyer M et al (2002) Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes. J Biol Chem 277:46769–46778

    Article  PubMed  CAS  Google Scholar 

  • Pilch PF, Liu L (2011) Fat caves: caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends Endocrinol Metab 22:318–324

    Article  PubMed  CAS  Google Scholar 

  • Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–438

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Luetterforst R, Lindsay M et al (2001) A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 152:1057–1070

    Article  PubMed  CAS  Google Scholar 

  • Puri V, Konda S, Ranjit S et al (2007) Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem 282:34213–34218

    Article  PubMed  CAS  Google Scholar 

  • Puri V, Ranjit S, Konda S et al (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A 105:7833–7838

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Combs TP, Wang XB et al (2002) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277:8635–8647

    Article  PubMed  CAS  Google Scholar 

  • Robenek MJ, Severs NJ, Schlattmann K et al (2004) Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J 18:866–868

    PubMed  CAS  Google Scholar 

  • Robenek H, Hofnagel O, Buers I et al (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119:4215–4224

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC et al (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Cabezas O, Puri V, Murano I et al (2009) Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med 1:280–287

    Article  PubMed  CAS  Google Scholar 

  • Schweiger M, Schreiber R, Haemmerle G et al (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–40241

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Kaushik S, Wang Y et al (2009a) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Xiang Y, Wang Y et al (2009b) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119:3329–3339

    Article  PubMed  CAS  Google Scholar 

  • Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787

    Article  PubMed  CAS  Google Scholar 

  • Straub BK, Stoeffel P, Heid H et al (2008) Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47:1936–1946

    Article  PubMed  CAS  Google Scholar 

  • Tansey JT, Sztalryd C, Gruia-Gray J et al (2001) Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A 98:6494–6499

    Article  PubMed  CAS  Google Scholar 

  • Tansey JT, Sztalryd C, Hlavin EM et al (2004) The central role of perilipin a in lipid metabolism and adipocyte lipolysis. IUBMB Life 56:379–385

    Article  PubMed  CAS  Google Scholar 

  • Tauchi-Sato K, Ozeki S, Houjou T et al (2002) The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 277:44507–44512

    Article  PubMed  CAS  Google Scholar 

  • Thiele C, Spandl J (2008) Cell biology of lipid droplets. Curr Opin Cell Biol 20:378–385

    Article  PubMed  CAS  Google Scholar 

  • van Herpen NA, Schrauwen-Hinderling VB (2008) Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav 94:231–241

    Article  PubMed  Google Scholar 

  • Walther TC, Farese RVJr (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466

    Article  PubMed  CAS  Google Scholar 

  • Welte MA (2009) Fat on the move: intracellular motion of lipid droplets. Biochem Soc Trans 37:991–996

    Article  PubMed  CAS  Google Scholar 

  • Zehmer JK, Huang Y, Peng G et al (2009) A role for lipid droplets in inter-membrane lipid traffic. Proteomics 9:914–921

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Goldman S, Baerga R et al (2009) Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A 106:19860–19865

    PubMed  CAS  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Cédric M. Blouin for its major contribution for the iconography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Dugail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Dugail, I., Le Lay, S. (2013). Adipocyte Lipid Droplet Physiology. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_9

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics