Skip to main content

Multiscale Approaches

  • Conference paper
Advances in Material Forming

Abstract

This paper presents a review of the main families of multiscale models. A first group of models is interested in an accurate modelling of the texture induced anisotropy of the material during numerical simulations. The differences between the proposed models are mainly due to different choices concerning the necessary compromise between the importance of the microscopic roots of the model and the maximum admissible computation time. The length scale of the investigated process is also an important parameter. The second group of micro-macro models is based on an analysis of the dislocation densities linked to the plastic deformations. A discussion concerning the past evolution, the recent achievements and the future trends concerning multiscale models is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Devincre, B., Kubin, L.P. Philos. Trans. R. Soc. Lond. Ser. A 355 (1997) 2003

    MATH  MathSciNet  Google Scholar 

  2. Schiotz, J., Di Tolla, F.D., Jacobsen, K.W. Nature 391 (1998) 561

    Article  Google Scholar 

  3. Van Swygenhoven, H., Deriet, P.M., Froseth, A.G.: Nucleation and propagation of dislocations in nanocrystalline fee metals. Acta Materialia 54 (2006) 1975–1983

    Article  Google Scholar 

  4. Sachs, G.: Zur ableitung einer fliessbedingung. Z. Verein Deutscher Ing, 72 (1928) 734–736

    Google Scholar 

  5. Taylor, G.I.: Plastic strain in metals. J. Inst. Met 62 (1938) 307–324

    Google Scholar 

  6. Bachu, V., Kalidindi, S.R.: On the accuracy of the predictions of texture evolution by the finite element technique for fee polycrystals. Materials Science and Engineering A257 (1998) 108–117

    Google Scholar 

  7. Honeff, H., Mecking, H.: Analysis of the deformation texture at different rolling conditions. In: Nagashima, S. (Ed.), Proceedings of ICOTOM 6, vol. 1. The Iron and Steel Institute of Japan, Tokyo (1981) 347–355

    Google Scholar 

  8. Kocks, U.F., Chandra, H.: Slip geometry in partially constrained deformation. Acta Metall. 30(1982)695

    Article  Google Scholar 

  9. Van Houtte, P.: On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystals. Mater. Sci. Eng. 55 (1982) 69–77

    Article  Google Scholar 

  10. Van Houtte, P., Rabet, L.: Generalisation of the relaxed constraints models for the prediction of deformation textures. Revue de Métallurgie-CIT/Science et Génie des matériaux (1997) 1483–1494

    Google Scholar 

  11. Van Houtte, P., Delannay, L., Samajdar, L: Quantitative prediction of cold rolling textures in low-carbon steel by means of the LAMEL model. Textures and Microstructures 31 (1999) 109–147

    Google Scholar 

  12. Van Houtte, P., Delannay, L., Kalidindi, S.R.: Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction. Int. J. Plasticity 18 (2002) 359–377

    Article  MATH  Google Scholar 

  13. Liu, Y.S., Delannay, L., Van Houtte, P.: Application of the Lamel model for simulating cold rolling texture in molybdenum sheet. Acta Materialia 50 (2002) 1849–1856

    Article  Google Scholar 

  14. Crumbach, M., Pomana, G., Wagner, P., Gottstein, G.: A Taylor type deformation texture model considering grain interaction and material properties. Part I — Fundamentals. In: Gottstein, G., Molodov, D.A. (Eds.), Recrystallisation and Grain Growth, Proceedings of the First Joint Conference, Springer, Berlin (2001) 1053–1060

    Google Scholar 

  15. Van Houtte, P., Li, S., Seefeldt, M., Delannay, L.: Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int J Plasticity 21 (2005) 589–624

    Article  MATH  Google Scholar 

  16. Berveiller, M., Zaoui, A.: Modeling of the plastic behaviour of inhomogeneous media. J. Engng. Mater. Technol, 106 (1984) 295–298

    Article  Google Scholar 

  17. Berbenni, S., Favier, V., Berveiller, M.: Impact of the grain size distribution on the yield stress of heterogeneous materials. Int J Plasticity 23 (2007) 114–142

    Article  MATH  Google Scholar 

  18. Kröner, E.: Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einskristalls. Z. Phys. (1958) 151

    Google Scholar 

  19. Lebensohn, R.A., Tome, C.N.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. Mater. 41 (1993) 2611–2624

    Article  Google Scholar 

  20. Molinari, A., Toth, L.: Tuning a self-consistent viscoplastic model by finite element results I: Modelling. Acta Metall. Mater. 42 (1994) 2453–2458

    Article  Google Scholar 

  21. Rouff, C, Favier, V., Bigot, R., Berveiller, M., Robelet, M.: Micro-macro modeling of the steady-state semi-solid behavior. The 5th ESAFORM Conference on Material Forming (2002) Krakow, Poland

    Google Scholar 

  22. Sabar, H., Berveiller, M., Favier, V., Berbenni, S.: A new class of micro-macro models for elastic-viscoplastic heterogeneous materials. Int. J. of Solids and Structures 39 (2002) 3257–3276

    Article  MATH  MathSciNet  Google Scholar 

  23. Frénois, S.: Modélisation polycristalline du comportement mécanique du tantale. Application à la mise en forme par hydro formage. Ph. D. Thesis (2001) Ecole Centrale des Arts et Manufactures, Ecole Centrale Paris

    Google Scholar 

  24. Anand, L., Balasubramanian, S., Kothari, M.: Constitutive modelling of polycrystalline metals at large strains: Application to deformation processing, large plastic deformation of crystalline aggregates. International Centre for Mechanical Sciences, Courses and Lectures n∘376, Springer Verlag, 109–172

    Google Scholar 

  25. Beaudoin, A.J., Dawson, P.R., Mathur, K.K., Kocks, U.F., Korzekwa, D.A.: Application of polycrystal plasticity to sheet forming. Comp. Methods Appl. Mech. Eng. 117 (1994) 49–70

    Article  MATH  Google Scholar 

  26. Bate, P.: Modelling deformation micro structure with the crystal plasticity finite-element method. Philos. T. Roy. Soc. A 357 (1999) 1589

    Article  Google Scholar 

  27. Kalidindi, S.R., Bronkhorst, C.A., Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40 (1992) 537–569

    Article  Google Scholar 

  28. Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comp. Meth. Appl. Mech. Eng. 155 (1998) 181–192

    Article  MATH  Google Scholar 

  29. Miehe, C, Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity, simulation of texture development in polycrystalline materials. Comp. Meth. Appl. Mech. Eng. 171 (1999) 387–418

    Article  MATH  Google Scholar 

  30. Geers, M.G.D., Kouznetsova, V., Brekelmans, W.A.M.: Constitutive approaches for the multi-level analysis of the mechanics of micro structures. 5th National Congress on Theoretical and Applied Mechanics, Louvain-la-Neuve, May 23–24 (2000)

    Google Scholar 

  31. Feyel, F., Chaboche, J.L.: Multiscale non linear FE analysis of composite structures: damage and fiber size effects. Euromech 417, October 2–4 (2000), University of Technology of Troyes, France

    Google Scholar 

  32. Delannay, L., Logé, R.E., Signorelli, J.W., Chastel, Y.: Evaluation of a multisite model for prediction of rolling textures in hep metals. Int. J. of Form. Proc. 8 (2005) 131

    Google Scholar 

  33. Delannay, L., Loge, R.E., Chastel, Y., Van Houtte, P.: Prediction of intergranular strains in cubic metals using a multisite elastic-plastic model. Acta Mater. 50 (2002) 5127–5138

    Article  Google Scholar 

  34. Delannay, L., Kalidindi, S.R., Van Houtte, P.: Quantitative prediction of texture in aluminium cold rolled to moderate strains. Mater. Sci. Eng. A 336 (2002) 233–244

    Article  Google Scholar 

  35. Kumar, A., Dawson, P.R.: The simulation of texture evolution during bulk deformation processes using finite elements over orientation space. Simulation of Materials Processing: Theory, Methods and Applications, Shen & Dawson, Balkema (1995)

    Google Scholar 

  36. Kumar, A., Dawson, P.R.: Polycrystal plasticity modeling of bulk forming with finite elements over orientation space. Comp. Mech. 17 (1995) 10–25

    MATH  Google Scholar 

  37. Kumar, A., Dawson, P.R.: The simulation of texture evolution with finite elements over orientation space. I. Development, II. Application to planar crystals. Comp. Methods Appl. Mech. Eng. 130 (1996) 227–261

    Article  MATH  MathSciNet  Google Scholar 

  38. Dawson, P.R., Kumar, A.: Deformation process simulations using polycrystal plasticity. Large plastic deformation of crystalline aggregates, International Centre for Mechanical Sciences, Courses and Lectures n∘376, Springer Verlag (1997) 247

    Google Scholar 

  39. Clement, A.: Prediction of deformation texture using a physical principle of conservation. Mater. Sci. Eng. 55 (1982) 203–210

    Article  Google Scholar 

  40. Van Houtte, P.: Application of Plastic Potentials to Strain Rate Sensitive and Insensitive Anisotropie Materials. Int. J. Plasticity 10 (1994) 719–748

    Article  MATH  Google Scholar 

  41. Van Bael, A., Van Houtte, P.: Convex fourth and sixth-order plastic potentials derived from crystallographic texture. J.Phys. IV France 105 (2003) 39–46

    Article  Google Scholar 

  42. Van Houtte, P., Van Bael, A.: Convex plastic potentials of fourth and sixth rank for anisotropic materials. Int. J. Plasticity 20 (2004) 1505–1524

    Article  MATH  Google Scholar 

  43. Arminjon, M., Bacroix, B., Imbault, D., Raphanel, J.L.: A fourth-order plastic potential for anisotropic metals and its analytical calculation from the texture function. Acta Mech. 107 (1994)33–51

    Article  MATH  MathSciNet  Google Scholar 

  44. Bacroix, B., Gilormini, P.: Finite element simulations of earing in polycrystalline materials using a texture-adjusted strain-rate potential. Model. Simulation Mater. Sci. Eng. 3 (1995) 1–21

    Article  Google Scholar 

  45. Zhou, Y., Jonas, J.J., Szabo, L., Makinde, A., Jain, M., MacEwen, S.R.: Incorporation of an anisotropic (texture-based) strain-rate potential into three-dimensional finite element simulations. Int. J. Plasticity 13 (1997) 165–181

    Article  MATH  Google Scholar 

  46. Darrieulat, M., Montheillet, F.: A texture based continuum approach for predicting the plastic behaviour of rolled sheet. Int. J. Plasticity 19 (2003) 517–546

    Article  MATH  Google Scholar 

  47. Maudlin, P.J., Wright, S.I., Kocks, U.F., Sahota, M.S.: An application of multisurface plasticity theory: yield surfaces of textured materials. Acta Mater. 44 (1996) 4027–4032

    Article  Google Scholar 

  48. Tomé, C.N., Maudlin, P.J., Lebensohn, R.A., Kaschner, G.C.: Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis. Acta Mater. 49 (2001) 3085–3096

    Article  Google Scholar 

  49. Habraken, A.M., Duchêne, L.: Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model. Int J Plasticity 20 (2004) 1525–1560

    Article  MATH  Google Scholar 

  50. Duchêne, L., El Houdaigui, F., Habraken, A.M.: Length changes and texture prediction during free end torsion test of copper bars with fern and remeshing techniques. International Journal of Plasticity (2007) doi: 10.1016/j.ijplas.2007.01.008

    Google Scholar 

  51. Van Bael, A., He, S., Van Houtte, P., Delannay, L., Duchêne, L., Habrakne, A.M.: Finite element simulations of cup drawing using the Taylor and the Lamel model. The 7th ESAFORM Conference on Material Forming (2004) Trondheim, Norway

    Google Scholar 

  52. Madej, L., Kuziak, R., Pietrzyk, M.: Validation of the history dependant constitutive law under varying conditions of hot deformation. The 6th ESAFORM Conference on Material Forming (2003) Salerno, Italy

    Google Scholar 

  53. Pietrzyk, M.: Numerical aspects of the simulation of hot metal forming using internal variable method. Metall. Foundry Eng. 20 (1994) 429–439

    Google Scholar 

  54. Luce, R., Aretz, H., Kopp, R., Goerdeler, M., Gottstein, G.: Microstructure simulation of multistep hot forming processes. The 4th ESAFORM Conference on Material Forming (2001) Liège, Belgium

    Google Scholar 

  55. Van Rompaey, T., Lani, F., Pardoen, T., Blanpain, B., Wollants, P.: Micromechanical study of the martensitic transformation in TRIP-assisted multi-phase steels. Solid State Transformation and Heat Treatment, ed. A. Hazotte, Wiley-VCH (2005) 87–94

    Google Scholar 

  56. Van Rompaey, T., Furnemont, Q., Jacques, P.J., Pardoen, T., Blanpain, B., Wollants, P.: Micromechanical modelling of TRIP steels. Steel Research International 74-6 (2003) 365–369

    Google Scholar 

  57. Pietrzyk, M., Roucoules, C, Hodgson, P.D.: Dislocation model for work hardening and recrystallization applied to the finite element simulation of hot forming. Proc. Conf. NUMIFORM (1995) 315–320

    Google Scholar 

  58. Cheong, K.S., Busso, E.P., Arsenlis, A.: A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts. Int. J. Plast. 21 (2005) 1797–1814

    Article  MATH  Google Scholar 

  59. Madej, L., Pietrzyk, M.: Analysis of possibilities of material behaviour modelling during hot plastic deformation. Metall. Foundry Eng. Special issue (2001) 143–149

    Google Scholar 

  60. Ordon, J., Kuziak, R., Pietrzyk, M.: History dependant constitutive law for austenitic steels. Proc. Metal Forming Conference (2000) Krakow, Poland, 747–753

    Google Scholar 

  61. Ordon, J., Pietrzyk, M., Kedzierski, Z., Kuziak, R.: Constitutive model based on two internal variables for constant and changing deformation conditions. Thermomechanical Processing Conference (2002) Sheffield, UK

    Google Scholar 

  62. Evers, L.P., Parks, D.M., Brekelmans, W.A.M., Geers, M.G.D.: Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. Journal of the Mechanics and Physics of Solids 50 (2002) 2403–2424

    Article  MATH  Google Scholar 

  63. Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52 (2004) 2379–2401

    Article  MATH  Google Scholar 

  64. Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D.: scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int. J. of Solids and Structures 41 (2004) 5209–5230

    Article  MATH  Google Scholar 

  65. Teodosiu, C, Hu, Z.: Evolution of the intergranular micro structure at moderate and large strains: modelling and computational significance. In Simulation of Materials Processing: Theory, Methods and Applications, NUMIFORM, Shen SF, Dawson PR (Eds.), Balkema, Rotterdam (1995) 173–182

    Google Scholar 

  66. Haddadi, H., Bouvier, S., Banu, M., Maier, C, Teodosiu, C: Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and identification. Int. J. Plasticity 22 (2006) 2226–2271

    Article  MATH  Google Scholar 

  67. Bouvier, S., Haddadi, H.: Modelling the behaviour of a bake-hardening steel using a dislocation structure based model. The 4th ESAFORM Conference on Material Forming (2001) Liège, Belgium

    Google Scholar 

  68. Duchêne, L., de Montleau, P., El Houdaigui, F., Bouvier, S., Habraken, A.M.: Analysis of texture evolution and hardening behaviour during deep drawing with an improved mixed type FEM element. Proc. Conf. NUMISHEET (2005)

    Google Scholar 

  69. Levkovitch, V., Svendsen, B., Wang, J.: Micromechanically motivated phenomenological modelling of induced flow anisotropy and its application to metal forming processes with complex strain path changes. The 9th ESAFORM Conference on Material Forming (2006) Glasgow, UK

    Google Scholar 

  70. Roters, F., Raabe, D., Gottstein, G.: Work hardening in heterogeneous alloys — a micro-structural approach based on three internal state variables. Acta Mater. 48 (2000) 4181–4189

    Article  Google Scholar 

  71. Franz G., Abed-Meraim, Ben Zineb T. Lemoine X., Berveiller M.: A multiscale model based on intragranular microstructure — Prediction of dislocation patterns at microscopic scale, The 10th ESAFORM Conference on Material Forming (2007) Zaragoza, Spain.

    Google Scholar 

  72. Plunkett B., Lebensohn R. A., Cazacu O., Barlat F.: Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening, Acta Mater., 54 (2006) 4159–4169

    Article  Google Scholar 

  73. Dunlop J.W., Bréchet Y.J.M., Legras L., Estrin Y.: Dislocation density-based modelling of plastic deformation of Zircaloy-4, Materials Science and Engineering A, 443 (2007) 77–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this paper

Cite this paper

Duchêne, L., Habraken, A.M. (2007). Multiscale Approaches. In: Advances in Material Forming. Springer, Paris. https://doi.org/10.1007/978-2-287-72143-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-72143-4_8

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-72142-7

  • Online ISBN: 978-2-287-72143-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics