Skip to main content

Learning and Vision-Based Obstacle Avoidance and Navigation

  • Chapter
Robot Intelligence

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

  • 1442 Accesses

Abstract

A novel algorithm for camera calibration and correction is proposed in this chapter. A model of camera distortion is built without any prior knowledge. The calibration parameters are obtained by optimizing an objective function about the sum of the back projection errors using the LM algorithm. Also the distorted images are corrected by using the LM algorithm. A comparative study based on both synthetic data and real images corrupted by noise shows that the proposed algorithm successfully calibrated and corrected the distorted image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anzani, F., Bosisio, D., Matteucci, M., Sorrenti, D.: On-line color calibration in non-stationary environments. Lect. Notes Comput. Sci. 4020, 396 (2006)

    Article  Google Scholar 

  2. Bertozzi, M., Bombini, L., Cerri, P., Medici, P., Antonello, P., Miglietta, M.: Obstacle detection and classification fusing radar and vision. In: IEEE Intelligent Vehicles Symposium, 608–613 (2008)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  4. Coombs, D., Herman, M., Hong, T., Nashman, M.: Real-time obstacle avoidance using central flow divergence, and peripheral flow. IEEE Trans. Robot. Autom. 14(1), 49–59 (1998)

    Article  Google Scholar 

  5. DeSouza, G., Kak, A.: Vision for mobile robot navigation: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 24, 237–267 (2002)

    Article  Google Scholar 

  6. Fahlman, S., Lebiere, C.: The cascade-correlation learning architecture. Technical report (1990)

    Google Scholar 

  7. Finlayson, G., Drew, M., Lu, C.: Entropy minimization for shadow removal. Int. J. Comput. Vis. 85(1), 35–57 (2009)

    Article  Google Scholar 

  8. Gutierrez-Osuna, R., Janet, J., Luo, R.: Modeling of ultrasonic range sensors for localization of autonomous mobile robots. IEEE Trans. Ind. Electron. 45(4), 654–662 (1998)

    Article  Google Scholar 

  9. Hwang, W., Weng, J.: Hierarchical discriminant regression. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1277–1293 (2000)

    Article  Google Scholar 

  10. Lemaire, T., Berger, C., Jung, I., Lacroix, S.: Vision-based slam: stereo and monocular approaches. Int. J. Comput. Vis. 74(3), 343–364 (2007)

    Article  Google Scholar 

  11. Lila, Y., Lursinsap, C., Lipikorn, R.: Object’s depth ordering in monocular image by using multi-neural network classification. In: SICE-ICASE International Joint Conference, pp. 587–592 (2006)

    Google Scholar 

  12. Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the mars exploration rovers. J. Field Robot. 24(3), 169–186 (2007)

    Article  Google Scholar 

  13. Marr, D.: Vision. Freeman, New York (1982)

    Google Scholar 

  14. Michels, J., Saxena, A., Ng, A.: High speed obstacle avoidance using monocular vision and reinforcement learning. Proceedings of the 22nd International Conference on Machine Learning, pp. 593–600 (2005)

    Google Scholar 

  15. Murray, D., Little, J.: Using real-time stereo vision for mobile robot navigation. Auton. Robots 8, 161–171 (2000)

    Article  Google Scholar 

  16. Olson, C.: Maximum-likelihood image matching. IEEE Trans. Pattern Anal. Mach. Intell. 24, 853–857 (2002)

    Article  Google Scholar 

  17. Olson, C., Abi-Rached, H., Ye, M., Hendrich, J.: Wide-baseline stereo vision for Mars rovers. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1302–1307 (2003)

    Google Scholar 

  18. Rosen, D.B., Rosen, A.: A robotic neural net based visual-sensory motor control system that reverse engineers the motor control functions of the human brains. In: Proceedings of International Joint Conference on Neural Networks, pp. 11–17 (2007)

    Google Scholar 

  19. Saxena, A., Chung, S., Ng, A.: 3-d depth reconstruction from a single still image. Int. J. Comput. Vis. 76(1), 53–69 (2008)

    Article  Google Scholar 

  20. Saxena, A., Sun, M., Ng, A.: Make3D: Learning 3D scene structure from a single still image. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 824–840 (2009)

    Article  Google Scholar 

  21. Scaramuzza, D., Siegwart, R.: Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Trans. Robot. 24(5), 1015–1026 (2008)

    Article  Google Scholar 

  22. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1), 7–42 (2002)

    Article  MATH  Google Scholar 

  23. Shufelt, J.: Performance evaluation and analysis of monocular buildingextraction from aerial imagery. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 311–326 (1999)

    Article  Google Scholar 

  24. Sola, J., Monin, A., Devy, M., Vidal-Calleja, T.: Fusing monocular information in multi-camera SLAM. IEEE Trans. Robot. 24(5), 958–968 (2008)

    Article  Google Scholar 

  25. Sridharan, M.: Robust structure-based autonomous color learning on a mobile robot. Ph.D. thesis (2007)

    Google Scholar 

  26. Sridharan, M., Stone, P.: Color learning and illumination invariance on mobile robots: a survey. Robot. Auton. Syst. 57(6), 629–844 (2009)

    Article  Google Scholar 

  27. Stone, M.: Structure-based color learning on a mobile robot under changing illumination. Autonomous Robots 23(3) (2007)

    Google Scholar 

  28. Swain-Oropeza, R., Devy, M., Hutchinson, S.: Sensor-based navigation in cluttered environments. In: IEEE International Conference on Intelligent Robots and Systems, vol. 3, pp. 1662–1669 (2001)

    Google Scholar 

  29. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., et al.: Stanley: the robot that won the DARPA grand challenge. J. Field Robot. 23(9), 661–692 (2006)

    Article  Google Scholar 

  30. Tian, J., Dong, W., Tang., Y.: Finding passable regions from a single still image. International journal of computer visionrobotics and automation 14(3) (2009)

    Google Scholar 

  31. Tsin, Y., Collins, R., Ramesh, V., Kanade, T.: Bayesian color constancy for outdoor object recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 1 (2001)

    Google Scholar 

  32. Weng, J., Hwang, W.: Online image classification using IHDR. Int. J. Doc. Anal. Recognit. 5(2), 118–125 (2003)

    Article  Google Scholar 

  33. Weng, J., Luwang, T., Lu, H., Xue, X.: A multilayer in-place learning network for development of general invariances. Int. J. Humanoid Robot. 4(2), 281–320 (2007)

    Article  Google Scholar 

  34. Weng, J., Luwang, T., Lu, H., Xue, X.: Multilayer in-place learning networks for modeling functional layers in the laminar cortex. Neural Netw. 21, 661–692 (2008)

    Article  Google Scholar 

  35. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  36. Wu, T., Tang, C.: A Bayesian approach for shadow extraction from a single image. In: IEEE International Conference on Computer Vision, pp. 480–487 (2005)

    Google Scholar 

  37. Yao, J., Zhang, Z.: Hierarchical shadow detection for color aerial images. Comput. Vis. Image Underst. 102(1), 60–69 (2006)

    Article  Google Scholar 

  38. Zhang, Z., et al.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The work in this chapter was supported in part by Natural Science Foundation of China (Grant Number: 60871078 and 60835004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tian, J., Tang, Y. (2010). Learning and Vision-Based Obstacle Avoidance and Navigation. In: Liu, H., Gu, D., Howlett, R., Liu, Y. (eds) Robot Intelligence. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84996-329-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-329-9_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-328-2

  • Online ISBN: 978-1-84996-329-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics