Skip to main content

Cellular and Molecular Aspects of Lung Function, its Control and Regulation

  • Chapter
  • First Online:
  • 1058 Accesses

Abstract

This chapter focuses on the molecular and cellular properties of the lung, and the mechanisms involved in the respiratory control throughout three integrative models:

  • The defense mechanisms of the airways.

  • The lung response to mechanical stress.

  • Regulatory components of the respiratory regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet. 1995;345:176-178.

    Article  PubMed  CAS  Google Scholar 

  2. Gerritsen J. Host defence mechanisms of the respiratory system. Paediatr Respir Rev. 2000;1:128-134.

    Article  PubMed  CAS  Google Scholar 

  3. Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J. 2004;23:327-333.

    Article  PubMed  CAS  Google Scholar 

  4. Davis CW, Dickey BF. Regulated airway goblet cell mucin secretion. Annu Rev Physiol. 2008;70:487-512.

    Article  PubMed  CAS  Google Scholar 

  5. Barton AD, Lourenco RV. Bronchial secretions and mucociliary clearance. Biochemical characteristics. Arch Intern Med. 1973;131:140-144.

    Article  PubMed  CAS  Google Scholar 

  6. Toremalm NG. The daily amoung of tracheo-bronchial secretions in man. A method for continuous tracheal aspiration in laryngectomized and tracheotomized patients. Acta Otolaryngol Suppl. 1960;158:43-53.

    Article  PubMed  CAS  Google Scholar 

  7. Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86:245-278.

    Article  PubMed  CAS  Google Scholar 

  8. Williams OW, Sharafkhaneh A, Kim V, Dickey BF, Evans CM. Airway mucus: from production to secretion. Am J Respir Cell Mol Biol. 2006;34:527-536.

    Article  PubMed  CAS  Google Scholar 

  9. Chilvers MA, O’Callaghan C. Local mucociliary defence mechanisms. Paediatr Respir Rev. 2000;1:27-34.

    Article  PubMed  CAS  Google Scholar 

  10. Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009;135:505-512.

    Article  PubMed  CAS  Google Scholar 

  11. Travis SM, Conway BA, Zabner J, et al. Activity of abundant antimicrobials of the human airway. Am J Respir Cell Mol Biol. 1999;20:872-879.

    PubMed  CAS  Google Scholar 

  12. Rutland J, Griffin WM, Cole PJ. Human ciliary beat frequency in epithelium from intrathoracic and extrathoracic airways. Am Rev Respir Dis. 1982;125:100-105.

    PubMed  CAS  Google Scholar 

  13. Hiemstra PS. The role of epithelial beta-defensins and cathelicidins in host defense of the lung. Exp Lung Res. 2007;33:537-542.

    Article  PubMed  CAS  Google Scholar 

  14. Nijnik A, Hancock RE. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol. 2009;16:41-47.

    Article  PubMed  CAS  Google Scholar 

  15. Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75:39-48.

    Article  PubMed  Google Scholar 

  16. Joris L, Dab I, Quinton PM. Elemental composition of human airway surface fluid in healthy and diseased airways. Am Rev Respir Dis. 1993;148:1633-1637.

    Article  PubMed  CAS  Google Scholar 

  17. Baraniuk JN. Neural regulation of mucosal function. Pulm Pharmacol Ther. 2008;21:442-448.

    Article  PubMed  CAS  Google Scholar 

  18. Tai CF, Baraniuk JN. Upper airway neurogenic mechanisms. Curr Opin Allergy Clin Immunol. 2002;2:11-19.

    Article  PubMed  Google Scholar 

  19. Muers MF. Diurnal variation in asthma. Arch Dis Child. 1984;59:898-901.

    Article  PubMed  CAS  Google Scholar 

  20. Bateman JR, Pavia D, Clarke SW. The retention of lung secretions during the night in normal subjects. Clin Sci Mol Med Suppl. 1978;55:523-527.

    PubMed  CAS  Google Scholar 

  21. Bienenstock J, McDermott MR. Bronchus- and nasal-associated lymphoid tissues. Immunol Rev. 2005;206:22-31.

    Article  PubMed  Google Scholar 

  22. Wu HM, Jin M, Marsh CB. Toward functional proteomics of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol. 2005;288:L585-L595.

    Article  PubMed  CAS  Google Scholar 

  23. Reddy RC. Immunomodulatory role of PPAR-gamma in alveolar macrophages. J Investig Med. 2008;56:522-527.

    PubMed  CAS  Google Scholar 

  24. Mason RJ. Biology of alveolar type II cells. Respirology. 2006;11(suppl):S12-S15.

    Google Scholar 

  25. Daniels CB, Orgeig S. Pulmonary surfactant: the key to the evolution of air breathing. News Physiol Sci. 2003;18:151-157.

    PubMed  CAS  Google Scholar 

  26. Ikegami M. Surfactant catabolism. Respirology. 2006;11(suppl):S24-S27.

    Google Scholar 

  27. Perez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta. 2008;1778:1676-1695.

    Article  PubMed  CAS  Google Scholar 

  28. Chicurel ME, Chen CS, Ingber DE. Cellular control lies in the balance of forces. Curr Opin Cell Biol. 1998;10:232-239.

    Article  PubMed  CAS  Google Scholar 

  29. Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575-599.

    Article  PubMed  CAS  Google Scholar 

  30. Janmey PA. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev. 1998;78:763-781.

    PubMed  CAS  Google Scholar 

  31. Janmey PA, McCulloch CA. Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng. 2007;9:1-34.

    Article  PubMed  CAS  Google Scholar 

  32. Wirtz HR, Dobbs LG. The effects of mechanical forces on lung functions. Respir Physiol. 2000;119:1-17.

    Article  PubMed  CAS  Google Scholar 

  33. Liu M, Skinner SJ, Xu J, Han RN, Tanswell AK, Post M. Stimulation of fetal rat lung cell proliferation in vitro by mechanical stretch. Am J Physiol. 1992;263:L376-L383.

    PubMed  CAS  Google Scholar 

  34. Skinner SJ, Somervell CE, Olson DM. The effects of mechanical stretching on fetal rat lung cell prostacyclin production. Prostaglandins. 1992;43:413-433.

    PubMed  CAS  Google Scholar 

  35. Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science. 1990;250:1266-1269.

    Article  PubMed  CAS  Google Scholar 

  36. Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol. 2007;213:565-573.

    Article  PubMed  CAS  Google Scholar 

  37. Fredberg JJ, Kamm RD. Stress transmission in the lung: pathways from organ to molecule. Annu Rev Physiol. 2006;68:507-541.

    Article  PubMed  CAS  Google Scholar 

  38. Garcia CS, Prota LF, Morales MM, Romero PV, Zin WA, Rocco PR. Understanding the mechanisms of lung mechanical stress. Braz J Med Biol Res. 2006;39:697-706.

    Article  PubMed  CAS  Google Scholar 

  39. Ali MH, Mungai PT, Schumacker PT. Stretch-induced phosphorylation of focal adhesion kinase in endothelial cells: role of mitochondrial oxidants. Am J Physiol Lung Cell Mol Physiol. 2006;291:L38-L45.

    Article  PubMed  CAS  Google Scholar 

  40. Gunst SJ, Tang DD, Opazo SA. Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung. Respir Physiol Neurobiol. 2003;137:151-168.

    Article  PubMed  Google Scholar 

  41. Zhang W, Gunst SJ. Interactions of airway smooth muscle cells with their tissue matrix: implications for contraction. Proc Am Thorac Soc. 2008;5:32-39.

    Article  PubMed  CAS  Google Scholar 

  42. Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR. Oxygen sensing in the body. Prog Biophys Mol Biol. 2006;91:249-286.

    Article  PubMed  CAS  Google Scholar 

  43. Gonzalez C, Rocher A, Zapata P. Arterial chemoreceptors: cellular and molecular mechanisms in the adaptative and homeostatic function of the carotid body. Rev Neurol. 2003;36:239-254.

    PubMed  CAS  Google Scholar 

  44. Koerner P, Hesslinger C, Schaefermeyer A, Prinz C, Gratzl M. Evidence for histamine as a transmitter in rat carotid body sensor cells. J Neurochem. 2004;91:493-500.

    Article  PubMed  CAS  Google Scholar 

  45. Lazarov NE, Reindl S, Fischer F, Gratzl M. Histaminergic and dopaminergic traits in the human carotid body. Respir Physiol Neurobiol. 2009;165:131-136.

    Article  PubMed  CAS  Google Scholar 

  46. Wyatt CN, Evans AM. AMP-activated protein kinase and chemotransduction in the carotid body. Respir Physiol Neurobiol. 2007;157:22-29.

    Article  PubMed  CAS  Google Scholar 

  47. Zapata P, Larrain C. How the carotid body works: different strategies and preparations to solve different problems. Biol Res. 2005;38:315-328.

    Article  PubMed  Google Scholar 

  48. Tan ZY, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res. 2007;101:1009-1019.

    Article  PubMed  CAS  Google Scholar 

  49. Trapp S, Aller MI, Wisden W, Gourine AV. A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci. 2008;28:8844-8850.

    Article  PubMed  CAS  Google Scholar 

  50. Garcia-Fernandez M, Ortega-Saenz P, Castellano A, Lopez-Barneo J. Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes. 2007;56:2893-2900.

    Article  PubMed  CAS  Google Scholar 

  51. Kumar P, Bin-Jaliah I. Adequate stimuli of the carotid body: more than an oxygen sensor? Respir Physiol Neurobiol. 2007;157:12-21.

    Article  PubMed  CAS  Google Scholar 

  52. Benditt JO. The neuromuscular respiratory system: physiology, pathophysiology, and a respiratory care approach to patients. Respir Care. 2006;51:829-837.

    PubMed  Google Scholar 

  53. Coates EL, Li A, Nattie EE. Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol. 1993;75:5-14.

    PubMed  CAS  Google Scholar 

  54. Filosa JA, Dean JB, Putnam RW. Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol. 2002;541:493-509.

    Article  PubMed  CAS  Google Scholar 

  55. Nattie E. CO2, brainstem chemoreceptors and breathing. Prog Neurobiol. 1999;59:299-331.

    Article  PubMed  CAS  Google Scholar 

  56. Filosa JA, Putnam RW. Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels. Am J Physiol Cell Physiol. 2003;284:C145-C155.

    PubMed  CAS  Google Scholar 

  57. Yu J. Airway mechanosensors. Respir Physiol Neurobiol. 2005;148:217-243.

    Article  PubMed  Google Scholar 

  58. Biscoe TJ, Stehbens WE. Ultrastructure of the denervated carotid body. Q J Exp Physiol Cogn Med Sci. 1967;52:31-36.

    Google Scholar 

  59. Campanucci VA, Nurse CA. Autonomic innervation of the carotid body: role in efferent inhibition. Respir Physiol Neurobiol. 2007;157:83-92.

    Article  PubMed  CAS  Google Scholar 

  60. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991;254:726-729.

    Article  PubMed  CAS  Google Scholar 

  61. Lavezzi AM, Matturri L. Functional neuroanatomy of the human pre-Botzinger complex with particular reference to sudden unexplained perinatal and infant death. Neuropathology. 2008;28:10-16.

    Article  PubMed  Google Scholar 

  62. Chevalier M, Ben-Mabrouk F, Tryba AK. Background sodium current underlying respiratory rhythm regularity. Eur J Neurosci. 2008;28:2423-2433.

    Article  PubMed  Google Scholar 

  63. Ptak K, Zummo GG, Alheid GF, Tkatch T, Surmeier DJ, McCrimmon DR. Sodium currents in medullary neurons isolated from the pre-Botzinger complex region. J Neurosci. 2005;25:5159-5170.

    Article  PubMed  CAS  Google Scholar 

  64. Pattinson KT. Opioids and the control of respiration. Br J Anaesth. 2008;100:747-758.

    Article  PubMed  CAS  Google Scholar 

  65. Feldman JL, McCrimmon DR. Neural control of breathing. In: Squire LR, Berg D, Bloom FE, du Lac S, Ghosh A, Spitzer NC, eds. Fundamental Neuroscience. Oxford: Elsevier; 2008:855-872.

    Google Scholar 

  66. Alheid GF, McCrimmon DR. The chemical neuroanatomy of breathing. Respir Physiol Neurobiol. 2008;164:3-11.

    Article  PubMed  CAS  Google Scholar 

  67. Lumsden T. Observations on the respiratory centres in the cat. J Physiol. 1923;57:153-160.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Armando Sánchez Godoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Godoy, J.A.S., Rivera, A.R. (2010). Cellular and Molecular Aspects of Lung Function, its Control and Regulation. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics