Skip to main content

Granger Causality: Theory and Applications

  • Chapter

Part of the book series: Computational Biology ((COBO,volume 15))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A lag operator ℒ is such that ℒX t =X t−1. Thus, applying the operator k times yields: ℒk X t =X tk . The auto-regressive model X t +A 1 X t−1+A 2 X t−2+⋅⋅⋅=ε t can be represented as (Id+A 1ℒ+A 22+⋅⋅⋅)X t =ε t .

References

  1. R. Aebersold, L.E. Hood, and J.D. Watts. Equipping scientists for the new biology. Nat Biotechnol, 18(4):359, 2000.

    Article  Google Scholar 

  2. H. Akaike. A new look at the statistical model identification. Autom Control, IEEE Trans, 19(6):716–723, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  3. U. Alon. Biological networks: the tinkerer as an engineer. Science, 301(5641):1866–1867, 2003.

    Article  Google Scholar 

  4. D. Anastassiou. Computational analysis of the synergy among multiple interacting genes. Mol Syst Biol, 3:83, 2007.

    Article  Google Scholar 

  5. C. Andrieu, N. de Freitas, A. Doucet, and M.I. Jordan. An introduction to MCMC for machine learning. Mach Learn, V50(1):5–43, 2003.

    Article  Google Scholar 

  6. W.L. Buntine. Operations for learning with graphical models. J Artif Intell Res, 2:159, 1994.

    Google Scholar 

  7. D.M. Camacho and J.J. Collins. Systems biology strikes gold. Cell, 137(1):24–26, 2009.

    Article  Google Scholar 

  8. I. Cantone, L. Marucci, F. Iorio, M.A. Ricci, V. Belcastro, M. Bansal, S. Santini, M. di Bernardo, D. di Bernardo, and M.P. Cosma. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell, 137(1):172–181, 2009.

    Article  Google Scholar 

  9. B. Chance, R.W. Estabrook, and A. Ghosh. Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc Natl Acad Sci, 51(6):1244–1251, 1964.

    Article  Google Scholar 

  10. Y. Chen, S.L. Bressler, and M. Ding. Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods, 150(2):228–237, 2006.

    Article  MathSciNet  Google Scholar 

  11. J.J. Chrobak and G. Buzsaki. Gamma oscillations in the entorhinal cortex of the freely behaving rat. J Neurosci, 18:388–398, 1998.

    Google Scholar 

  12. M. Ding, Y. Chen, and S.L. Bressler. Granger causality: Basic theory and application to neuroscience. In J. Timmer, B. Schelter, M. Winterhalder, editors, Handbook of Time Series Analysis, pages 451–474. Wiley-VCH, Weinheins, 2006.

    Google Scholar 

  13. M.R. Doyle, S.J. Davis, R.M. Bastow, H.G. McWatters, L. Kozma-Bognár, F. Nagy, A.J. Milla, and R.M. Amasino. The elf4 gene controls circadian rhythms and flowering time in arabidopsis thaliana. Nature, 1419:74–77, 2002.

    Article  Google Scholar 

  14. T. Fawcett. An introduction to ROC analysis. Pattern Recogn Lett, 27(8):861–874, 2006.

    Article  MathSciNet  Google Scholar 

  15. J.F. Feng, D.Y. Yi, R. Krishna, S.X. Guo, and V. Buchanan-Wollaston. Listen to genes: dealing with microarray data in the frequency domain. PLoS ONE, 4(4):e5098+, 2009.

    Article  Google Scholar 

  16. K. Friston. Causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol, 7(2):e1000033+, 2009.

    Article  Google Scholar 

  17. K.J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling. NeuroImage, 19(4):1273–1302, 2003.

    Article  Google Scholar 

  18. T.S. Gardner, D. di Bernardo, D. Lorenz, and J.J. Collins. Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301(5629):102–105, 2003.

    Article  Google Scholar 

  19. T. Ge, K.M. Kendrick, and J.F. Feng. A unified dynamic and granger causal model approach demonstrates brain hemispheric differences during face recognition learning. PLoS Comput Biol, 2009, submitted.

    Google Scholar 

  20. J.F. Geweke. Measurement of linear dependence and feedback between multiple time series. J Am Stat Assoc, 77(378):304–313, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  21. J.F. Geweke. Measures of conditional linear-dependence and feedback between time series. J Am Stat Assoc, 79(388):907–915, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Gourévitch, R.L. Bouquin-Jeannès, and G. Faucon. Linear nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern, 95(4):349–369, 2006.

    Article  MATH  Google Scholar 

  23. C. Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37:424–438, 1969.

    Article  Google Scholar 

  24. C. Granger. Testing for causality: a personal viewpoint. J Econ Dynam Control, 2:329–352, 1980.

    Article  MathSciNet  Google Scholar 

  25. S. Guo, A.K. Seth, K.M. Kendrick, C. Zhou, and J.F. Feng. Partial Granger causality–eliminating exogenous inputs and latent variables. J Neurosci Methods, 172(1):79, 2008.

    Article  Google Scholar 

  26. S. Guo, J. Wu, M. Ding, and J.F. Feng. Uncovering interactions in the frequency domain. PLoS Comput Biol, 4(5):e1000087, 2008.

    Article  MathSciNet  Google Scholar 

  27. S. He. Estimation of the mixed AR and hidden periodic model. Acta Math Appl Sin Engl Ser, 13(2):196–208, 1997.

    Article  MATH  Google Scholar 

  28. E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach. Systems biology in practice: concepts, implementation and application, 2005.

    Google Scholar 

  29. C. Ladroue, S.X. Guo, K. Kendrick, and J.F. Feng. Beyond element-wise interactions: identifying complex interactions in biological processes. PLoS ONE, 4(9):e6899, 2009.

    Article  Google Scholar 

  30. J.C. Locke, L. Kozma-Bognar, P.D. Gould, B. Feher, E. Kevei, F. Nagy, M.S. Turner, A. Hall, and A.J. Millar. Experimental validation of a predicted feedback loop in the multi-oscillator clock of arabidopsis thaliana. Mol Syst Biol, 2:59, 2006.

    Article  Google Scholar 

  31. H.G. McWatters, E. Kolmos, A. Hall, M.R. Doyle, R.M. Amasino, P. Gyula, F. Nagy, A.J. Millar, and S.J. Davis. ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol, 144(1):391, 2007.

    Article  Google Scholar 

  32. D.S. Moore. The Basic Practice of Statistics. Freeman, New York, 2003.

    Google Scholar 

  33. M. Morf, A. Vieira, D.T.L. Lee, and T. Kailath. Recursive multichannel maximum entropy spectral estimation. Geosci Electron IEEE Trans, 16(2):85–94, 1978.

    Article  MathSciNet  Google Scholar 

  34. S. Mukherjee and T.P. Speed. Network inference using informative priors. Proc Natl Acad Sci, 105(38):14313–14318, 2008.

    Article  Google Scholar 

  35. C.J. Needham, J.R. Bradford, A.J. Bulpitt, and D.R. Westhead. A primer on learning in Bayesian networks for computational biology. PLoS Comput Biol, 3(8):e129, 2007.

    Article  Google Scholar 

  36. A. Neumaier and T. Schneider. Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw, 27(1):27–57, 2001.

    Article  MATH  Google Scholar 

  37. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  38. J. Quackenbush. Computational analysis of microarray data. Nat Rev Genet, 2(6):418–427, 2001.

    Article  Google Scholar 

  39. K. Sachs, O. Perez, D. Pe’er, D.A. Lauffenburger, and G.P. Nolan. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

    Article  Google Scholar 

  40. M. Schelter, B. an Winterhalderm, and J. Timmer. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications. Wiley-VCH, Weinheim, 2006.

    Book  MATH  Google Scholar 

  41. T.F. Schultz and S.A. Kay. Circadian clocks in daily and seasonal control of development. Science, 301(5631):326–328, 2003.

    Article  Google Scholar 

  42. T.P. Speed. Statistical Analysis of Gene Expression Microarray Data. CRC Press, Boca Raton, 2003.

    Book  MATH  Google Scholar 

  43. A.N. Stepanova and J.M. Alonso. Arabidopsis ethylene signaling pathway. Science, 276:1872–1874, 2005.

    Google Scholar 

  44. G.C. Tiao and M.R. Grupe. Hidden periodic autoregressive-moving average models in time series data. Biometrika, 67(2):365–373, 1980.

    MathSciNet  MATH  Google Scholar 

  45. H.R. Ueda. Systems biology flowering in the plant clock field. Mol Syst Biol, 2:60, 2006.

    Article  Google Scholar 

  46. H.R. Ueda, W.B. Chen, A. Adachi, H. Wakamatsu, S. Hayashi, T. Takasugi, M. Nagano, K. Nakahama, Y. Suzuki, S. Sugano, M. Iino, Y. Shigeyoshi, and S. Hashimoto. A transcription factor response element for gene expression during circadian night. Nature, 418(6897):534–539, 2002.

    Article  Google Scholar 

  47. N. Wiener. The theory of prediction. Mod Math Eng Ser, 1:125–139, 1956.

    Google Scholar 

  48. J.H. Wu, K. Kendrick, and J.F. Feng. Detecting correlation changes in electrophysiological data. J Neurosci Methods, 161(1):155–165, 2007.

    Article  Google Scholar 

  49. J.H. Wu, X.G. Liu, and J.F. Feng. Detecting causality between different frequencies. J Neurosci Methods, 167(2):367–375, 2008.

    Article  Google Scholar 

  50. J.H. Wu, J.L. Sinfield, and J.F. Feng. Impact of environmental inputs on reverse-engineering approach to network structures. BMC Systems Biology, 3:113, 2009.

    Article  Google Scholar 

  51. J. Yu, A.V. Smith, P.P. Wang, and A.J. Hartemink. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20(18):3594–3603, 2004.

    Article  Google Scholar 

  52. C.L. Zou and J.F. Feng. Granger causality vs. dynamic bayesian network inference: a comparative study. BMC Bioinform, 10(1):122, 2009.

    Article  Google Scholar 

  53. C.L. Zou, C. Ladroue, S.X. Guo, and J.F. Feng. Identifying interactions in the time and frequency domains in local and global networks. BMC Bioinform, 2010, under revision.

    Google Scholar 

  54. C.L. Zou, K.M. Kendrick, and J.F. Feng. The fourth way: Granger causality is better than the three other reverse-engineering approaches. Cell, 2009. http://www.cell.com/comments/S0092-8674(09)00156-1.

  55. M. Zylka, L. Shearman, J. Levine, X. Jin, D. Weaver, and S. Reppert. Molecular analysis of mammalian timeless. Neuron, 21(5):1115–1122, 1998.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from EPRSC (UK, CARMEN EP/E002331/1) and EU grant (BION) and NSFC (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Feng .

Editor information

Editors and Affiliations

Appendix: Estimating the Error Covariance Matrix

Appendix: Estimating the Error Covariance Matrix

The main quantity of interest for calculating Granger causality is the covariance matrix of the error term ε in the d-dimensional auto-regressive (AR) model

$$X_t=\sum_{i=1}^pA_iX_{t-i}+\varepsilon (t)$$

The coefficients of the matrices A i need to be estimated from the data. Typically, they are found by minimising the variance of the error between the prediction X t and the observation at the same time t. Morf’s procedure [33] provides a fast and robust way of estimating A i and the covariance matrix of ε via a recursive algorithm. Unless prior knowledge informs us about the likely order p of the AR model (for example by knowing at which time-scale one should expect interactions to take place), it also has to be estimated from the data. The goodness of fit alone is not sufficient for selecting the optimal order: adding a new order implies adding d 2 more unknowns to the system, which considerably improves the fitting simply by increasing the degrees of freedom. The Akaike Information Criterion (AIC, [2]) provides a trade-off between the model complexity (a function of p) and the fit. For an AR model of dimension d, of order p and with T observations, this quantity can be written as

$$\texttt{AIC}(p)=2d^2p+d(T-p)\log \left(2\pi\sum_{\underset{i=1\ldots d}{t=p+1\ldots T}}\frac{ \varepsilon ^2_i(t)}{d(T-p)}\right)$$

The optimal order p is then defined as the one that minimises the AIC. A point estimate of the Granger causality is often not sufficient for making a strong conclusion about the data and a confidence interval is required. In some cases ([25] for partial Granger causality), it is possible to derive the confidence interval in closed form. In general, it is estimated via a bootstrap procedure [32]—given the optimal AR model, an ensemble of signals are generated which each produce a value for the Granger causality. The final estimation of the Granger causality and its confidence interval are defined as the average and the standard error of this set of estimates.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Guo, S., Ladroue, C., Feng, J. (2010). Granger Causality: Theory and Applications. In: Feng, J., Fu, W., Sun, F. (eds) Frontiers in Computational and Systems Biology. Computational Biology, vol 15. Springer, London. https://doi.org/10.1007/978-1-84996-196-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-196-7_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-195-0

  • Online ISBN: 978-1-84996-196-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics