Skip to main content

Training and Credentialing in Robotic Urological Surgery

  • Chapter
  • First Online:

Abstract

Robotic urological surgery (RUS) has undergone an exponential growth in the last decade and robotic-assisted radical prostatectomy (RARP) is now the most commonly performed robotic procedure. Although guidelines for the safe initiation of this technology are an overwhelming necessity, no standardized credentialing system currently exists to assess competency and safety of the RUS surgeon. An absence of an established training and credentialing protocol for RUS can result in unnecessary complications – both surgical and medicolegal. Above all, it can potentially compromise the safety of the patient undergoing the surgical procedure. Various educational formats including residency, fellowship, “mini-residency,” proctoring, teleproctoring, preceptoring, and simulation can provide the requisite training and evaluation for robotic urological surgeons. However, the need of the hour is the establishment of a central credentialing authority that supervises these educational endeavors and lays down the framework for common guidelines for the safe initiation of a robotic program in any institution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408-410.

    Article  PubMed  CAS  Google Scholar 

  2. Pasticier G, Rietbergen JB, Guillonneau B, Fromont G, Menon M, Vallancien G. Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol. 2001;40:70-74.

    Article  PubMed  CAS  Google Scholar 

  3. Menon M, Tewari A, Peabody J. Vattikuti Institute prostatectomy: technique. J Urol. 2003;169:2289-2292.

    Article  PubMed  Google Scholar 

  4. Intuitive Surgical web site. www.intuitivesurgical.com. Accessed August 15, 2009.

  5. Steinberg PL, Merguerian PA, Bihrle W III, Seigne JD. The cost of learning robotic-assisted prostatectomy. Urology. 2008;72:1068-1072.

    Article  PubMed  Google Scholar 

  6. Badani KK, Kaul S, Menon M. Evolution of robotic radical prostatectomy: assessment after 2766 procedures. Cancer. 2007;110:1951-1958.

    Article  PubMed  Google Scholar 

  7. Hermann TR, Rabenalt R, Stolzenburg JJ, et al. Oncological and functional results of open, robot-assisted and laparoscopic radical prostatectomy: does surgical approach and surgical experience matter? World J Urol. 2007;25:149-160.

    Article  Google Scholar 

  8. Boris RS, Kaul SA, Sarle RC, Stricker HJ. Radical prostatectomy: a single surgeon comparison of retropubic, perineal, and robotic approaches. Can J Urol. 2007;14:3566-3570.

    PubMed  Google Scholar 

  9. Patel VR, Thaly R, Shah K. Robotic radical prostatectomy: outcomes of 500 cases. BJU Int. 2007;99:1109-1112.

    Article  PubMed  Google Scholar 

  10. Atug F, Castle EP, Srivastav SK, Burgess SV, Thomas R, Davis R. Positive margins in robotic-assisted radical prostatectomy: impact of learning curve on oncologic outcomes. Eur Urol. 2006;49:866-871.

    Article  PubMed  Google Scholar 

  11. Ahlering TE, Eichel L, Edwards RA, Lee DI, Skarecky DW. Robotic radical prostatectomy: a technique to reduce pT2 positive margins. Urology. 2004;64:1224-1228.

    Article  PubMed  Google Scholar 

  12. Zorn KC, Orvieto MA, Gong EM, et al. Robotic radical prostatectomy learning curve of a fellowship – trained laparoscopic surgeon. J Endourol. 2007;21:441-447.

    Article  PubMed  Google Scholar 

  13. Vickers AJ, Bianco FJ, Serio AM, et al. The surgical learning curve for prostate cancer control after radical prostatectomy. J Natl Cancer Inst. 2007;99:1171-1177.

    Article  PubMed  Google Scholar 

  14. Vickers AJ, Bianco FJ, Gonen M, et al. Excellent rates of cancer control for patients with organ-confined disease treated by the most experienced surgeons suggest that the primary reason such patients recur is inadequate surgical technique. Eur Urol. 2008;53:960-966.

    Article  PubMed  Google Scholar 

  15. Zorn KC, Wille MA, Thong AE, et al. Continued Improvement of perioperative, pathological and continence outcomes during 700 robot assisted radical prostatectomies. Can J Urol. 2009;16:4742-4749.

    PubMed  Google Scholar 

  16. Wilt TJ, Shamliyan TA, Taylor BC, MacDonald R, Kane RL. Association between hospital and surgeon radical prostatectomy volume and patient outcomes: a systematic review. J Urol. 2008;180:820-829.

    Article  PubMed  Google Scholar 

  17. Nuttall M, Van der Meulen J, Phillips N, et al. A systematic review and critique of the literature relating hospital or surgeon volume to health outcomes for 3 urological cancer procedures. J Urol. 2004;172:2145-2152.

    Article  PubMed  Google Scholar 

  18. Duchene DA, Moinzadeh A, Gill IS, Clayman RV, Winfield HN. Survey of residency training in laparoscopic and robotic surgery. J Urol. 2006;176:2158-2166.

    Article  PubMed  Google Scholar 

  19. Rashid HH, Leung YY, Rashid MJ, Oleyourryk G, Valvo JR, Eichel L. Robotic surgical education: a systematic approach to training urology residents to perform robotic-assisted laparoscopic radical prostatectomy. Urology. 2006;68:75-79.

    Article  PubMed  Google Scholar 

  20. Yap SA, Ellison LM, Low RK. Current laparoscopy training in urology: a comparison of fellowships governed by the Society of Urologic Oncology and the Endourological Society. J Endourol. 2008;22:1755-1760.

    Article  PubMed  Google Scholar 

  21. Gautam G. The current three-year postgraduate program in urology is insufficient to train a urologist. Indian J Urol. 2008;24:336-338.

    Article  PubMed  Google Scholar 

  22. Guzzo TJ, Gonzalgo ML. Robotic surgical training of the urologic oncologist. Urol Oncol. 2009;27:214-217.

    Article  PubMed  Google Scholar 

  23. Schroeck FR, de Sousa CA, Kalman RA, et al. Trainees do not negatively impact the institutional learning curve for robotic prostatectomy as characterized by operative time, estimated blood loss, and positive surgical margin rate. Urology. 2008;71:597-601.

    Article  PubMed  Google Scholar 

  24. McDougall EM, Corica FA, Chou DS, et al. Short-term impact of a robot-assisted laparoscopic ­prostatectomy “mini-residency” experience on postgraduate urologists’ practice patterns. Int J Med Robot. 2006;2:70-74.

    PubMed  Google Scholar 

  25. Gamboa AJ, Santos RT, Sargent ER, et al. Long-term impact of a robot assisted laparoscopic prostatectomy mini fellowship training program on postgraduate urological practice patterns. J Urol. 2009;181:778-782.

    Article  PubMed  Google Scholar 

  26. Wignall GR, Denstedt JD, Preminger GM, et al. Surgical simulation: a urological perspective. J Urol. 2008;179:1690-1699.

    Article  PubMed  Google Scholar 

  27. Satava RM. Accomplishments and challenges of surgical simulation. Surg Endosc. 2001;15:232-241.

    Article  PubMed  CAS  Google Scholar 

  28. Matsumoto ED, Hamstra SJ, Radomski SB, Cusimano MD. The effect of bench model fidelity on endourological skills: a randomized controlled study. J Urol. 2002;167:1243-1247.

    Article  PubMed  Google Scholar 

  29. Grober ED, Hamstra SJ, Wanzel KR, et al. The educational impact of bench model fidelity on the acquisition of technical skill: the use of clinically relevant outcome measures. Ann Surg. 2004;240:374-381.

    Article  PubMed  Google Scholar 

  30. Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73:1288-1292.

    Article  PubMed  Google Scholar 

  31. Sachdeva AK, Russell TR. Safe introduction of new procedures and emerging technologies in surgery: education, credentialing and privileging. Surg Clin N Am. 2007;87:853-866.

    Article  PubMed  Google Scholar 

  32. Sachdeva AK. Acquiring skills in new procedures and technology: the challenge and the opportunity. Arch Surg. 2005;140:387-389.

    Article  PubMed  Google Scholar 

  33. Livingston EH, Harwell JD. The medicolegal aspects of proctoring. Am J Surg. 2002;184:26-30.

    Article  PubMed  Google Scholar 

  34. Sachdeva AK, Blair PG. Enhancing patient safety through educational interventions. In: Manuel BM, Nora PF, eds. Surgical Patient Safety: Essential Information for Surgeons in Today’s Environment. Chicago: American College of Surgeons; 2004: chap 14.

    Google Scholar 

  35. Ellison LM, Pinto PA, Kim F, et al. Telerounding and patient satisfaction after surgery. J Am Coll Surg. 2004;199:523-530.

    Article  PubMed  Google Scholar 

  36. Ellison LM, Nguyen M, Fabrizio MD, Soh A, Permpongkosol S, Kavoussi LR. Postoperative robotic telerounding: a multicenter randomized assessment of patient outcomes and satisfaction. Arch Surg. 2007;142:1177-1181.

    Article  PubMed  Google Scholar 

  37. Smith CD, Skandalakis JE. Remote presence ­proctoring by using a wireless remote-control videoconferencing system. Surg Innov. 2005;12:139-143.

    Article  PubMed  Google Scholar 

  38. Burgess LPA, Syms MJ, Holtel MR, Birkmire-Peters DP, Johnson RE, Ramsey MJ. Telemedicine: teleproctored endoscopic sinus surgery. Laryngoscope. 2002;112:216-219.

    Article  PubMed  Google Scholar 

  39. Zorn KC, Gautam G, Shalhav AL, et al. Training, credentialing, proctoring and medicolegal risks of robotic urological surgery: recommendations of the society of urologic robotic surgeons. J Urol. 2009;182:1126-1132.

    Article  PubMed  Google Scholar 

  40. Sachdeva AK. Invited commentary: educational interventions to address the core competencies in surgery. Surgery. 2004;135:43-47.

    Article  PubMed  Google Scholar 

  41. Sachdeva AK. Acquisition and maintenance of surgical competence. Semin Vasc Surg. 2002;15:182-190.

    Article  PubMed  Google Scholar 

  42. Verification by the American College of Surgeons for the use of emerging technologies. Bull Am Coll Surg. 1998;83:34-40.

    Google Scholar 

  43. American College of Surgeons. Statements on emerging surgical technologies and the evaluation of credentials. Surg Endosc. 1995;9:207-213.

    Google Scholar 

  44. Lee JY, Mucksavage P, Sundaram CP, McDougall EM. Best practices for robotic surgery training and credentialing. J Urol. 2011 Apr;185(4):1191-1197. Epub 2011 Feb 22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gautam, G., DeCastro, G.J., Trinh, QD., Zorn, K. (2011). Training and Credentialing in Robotic Urological Surgery. In: Patel, V. (eds) Robotic Urologic Surgery. Springer, London. https://doi.org/10.1007/978-1-84882-800-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-800-1_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-799-8

  • Online ISBN: 978-1-84882-800-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics