Skip to main content

Epigenetic Mechanisms in the Developmental Origins of Adult Disease

  • Chapter
  • First Online:

Abstract

Non-communicable diseases (NCD), including diabetes, cardiovascular disease, and the metabolic syndrome, account for 60% of all deaths globally.151 In low to middle income countries, NCD are becoming particularly important as they increase rapidly in countries that undergo socioeconomic improvement. While the increase in NCD is due in part to the adoption of a Western lifestyle, there is growing recognition of the role played by developmental factors. This is in accordance with the fundamental principles of life-course biology, with developmental trajectories established in early life influencing the response to later exposures, such as adult lifestyle (Fig. 13.1). Moreover, the temporal trends in NCD may, in significant part, arise from effects on phenotype established by the interaction between genes and the developmental environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aerts L, Van Assche FA. Animal evidence for the transgenerational development of diabetes mellitus. Int J Biochem Cell Biol. 2006;38:894-903.

    Article  PubMed  CAS  Google Scholar 

  2. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466-1469.

    Article  PubMed  CAS  Google Scholar 

  3. Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561:355-377.

    Article  PubMed  CAS  Google Scholar 

  4. Baird DD, Newbold R. Prenatal diethylstilbestrol (DES) exposure is associated with uterine leiomyoma development. Reprod Toxicol. 2005;20:81-84.

    Article  PubMed  CAS  Google Scholar 

  5. Bateson P, Barker D, Clutton-Brock T, et al. Developmental plasticity and human health. Nature. 2004;430:419-421.

    Article  PubMed  CAS  Google Scholar 

  6. Batra V, Mishra KP. Modulation of DNA methyltransferase profile by methyl donor starvation followed by gamma irradiation. Mol Cell Biochem. 2007;294:181-187.

    Article  PubMed  CAS  Google Scholar 

  7. Bellinger L, Sculley DV, Langley-Evans SC. Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes Lond. 2006;30:729-738.

    Article  PubMed  CAS  Google Scholar 

  8. Benvenisty N, Mencher D, Meyuhas O, Razin A, Reshef L. Sequential changes in DNA methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development. Proc Natl Acad Sci USA. 1985;82:267-271.

    Article  PubMed  CAS  Google Scholar 

  9. Benyshek DC, Johnston CS, Martin JF. Glucose metabolism is altered in the adequately-nourished grand-offspring (F-3 generation) of rats malnourished during gestation and perinatal life. Diabetologia. 2006;49:1117-1119.

    Article  PubMed  CAS  Google Scholar 

  10. Benyshek DC, Martin JF, Johnston CS. A reconsideration of the origins of the type 2 diabetes epidemic among Native Americans and the implications for intervention policy. Med Anthropol. 2001;20:25-64.

    Article  PubMed  CAS  Google Scholar 

  11. Bertram CE, Hanson MA. Animal models and programming of the metabolic syndrome. Br Med Bull. 2001;60:103-121.

    Article  PubMed  CAS  Google Scholar 

  12. Bertram C, Khan O, Ohri S, Phillips DI, Matthews SG, Hanson MA. Transgenerational effects of prenatal nutrient restriction on cardiovascular and hypothalamic-pituitary-adrenal function. J Physiol. 2008;586:2217-2229.

    Article  PubMed  CAS  Google Scholar 

  13. Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB. The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology. 2001;142:2841-2853.

    Article  PubMed  CAS  Google Scholar 

  14. Bhargava SK, Sachdev HS, Fall CH, et al. Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med. 2004;350:865-875.

    Article  PubMed  CAS  Google Scholar 

  15. Bogdarina I, Murphy HC, Burns SP, Clark AJ. Investigation of the role of epigenetic modification of the rat glucokinase gene in fetal programming. Life Sci. 2004;74:1407-1415.

    Article  PubMed  CAS  Google Scholar 

  16. Brandeis M, Kafri T, Ariel M, et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 1993;12:3669-3677.

    PubMed  CAS  Google Scholar 

  17. Brennan KA, Gopalakrishnan GS, Kurlak L, Rhind SM, Kyle CE, et al. Impact of maternal undernutrition and fetal number on glucocorticoid, growth hormone and insulin-like growth factor receptor mRNA abundance in the ovine fetal kidney. Reproduction. 2005;129:151-159.

    Article  PubMed  CAS  Google Scholar 

  18. Brouwers MM, Feitz WF, Roelofs LA, Kiemeney LA, de Gier RP, Roeleveld N. Hypospadias: a transgenerational effect of diethylstilbestrol? Hum Reprod. 2006;21:666-669.

    Article  PubMed  CAS  Google Scholar 

  19. Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr. 2007;97:1036-1046.

    Article  PubMed  CAS  Google Scholar 

  20. Burdge GC, Lillycrop KA, Jackson AA. Nutrition in early life, and risk of cancer and metabolic disease: alternative endings in an epigenetic tale? Br J Nutr. 2009;101:619-630.

    Article  PubMed  CAS  Google Scholar 

  21. Burdge GC, Lillycrop KA, Jackson AA, Gluckman PD, Hanson MA. The nature of the growth pattern and of the metabolic response to fasting in the rat are dependent upon the dietary protein and folic acid intakes of their pregnant dams and post-weaning fat consumption. Br J Nutr. 2008;99:540-549.

    Article  PubMed  CAS  Google Scholar 

  22. Burdge GC, Lillycrop KA, Phillips ES, Slater-Jefferies JL, Jackson AA, Hanson MA. Folic acid supplementation during the juvenile-pubertal period in rats modifies the phenotype and epigenotype induced by prenatal nutrition. J Nutr. 2009;139:1054-1060.

    Article  PubMed  CAS  Google Scholar 

  23. Burdge GC, Phillips ES, Dunn RL, Jackson AA, Lillycrop KA. Effect of reduced maternal protein consumption during pregnancy in the rat on plasma lipid concentrations and expression of peroxisomal proliferator-activated receptors in the liver and adipose tissue of the offspring. Nutr Res. 2004;24:639-646.

    Article  CAS  Google Scholar 

  24. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. 2007;97:435-439.

    Article  PubMed  CAS  Google Scholar 

  25. Carbone L, Harris RA, Vessere GM, et al. Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet. 2009;5:e1000538.

    Article  PubMed  CAS  Google Scholar 

  26. Catalano PM, Kirwan JP. Maternal factors that determine neonatal size and body fat. Curr Diab Rep. 2001;1:71-77.

    Article  PubMed  CAS  Google Scholar 

  27. Cleal JK, Poore KR, Boullin JP, et al. Mismatched pre- and postnatal nutrition leads to cardiovascular dysfunction and altered renal function in adulthood. Proc Natl Acad Sci USA. 2007;104:9529-9533.

    Article  PubMed  CAS  Google Scholar 

  28. Davies MJ. Evidence for effects of weight on reproduction in women. Reprod Biomed Online. 2006;12:552-561.

    Article  PubMed  Google Scholar 

  29. Delaval K, Feil R. Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev. 2004;14:188-195.

    Article  PubMed  CAS  Google Scholar 

  30. Dolinoy DC, Das R, Weidman JR, Jirtle RL. Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res. 2007;61:30R-37R.

    Article  PubMed  Google Scholar 

  31. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA. 2007;104:13056-13061.

    Article  PubMed  CAS  Google Scholar 

  32. Drake AJ, Walker BR, Seckl JR. Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol. 2005;288:R34-R38.

    Article  PubMed  CAS  Google Scholar 

  33. Druker R, Bruxner TJ, Lehrbach NJ, Whitelaw E. Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucleic Acids Res. 2004;32:5800-5808.

    Article  PubMed  CAS  Google Scholar 

  34. Duhl DMJ, Vrieling H, Miller KA, Wolff GL, Barsh GS. Neomorphic agouti mutations in obese yellow mice. Nat Genet. 1994;8:59-65.

    Article  PubMed  CAS  Google Scholar 

  35. Ehrich M, Nelson MR, Stanssens P, et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA. 2005;102:15785-15790.

    Article  PubMed  CAS  Google Scholar 

  36. Fernandez-Twinn DS, Wayman A, Ekizoglou S, Martin MS, Hales CN, Ozanne SE. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-mo-old female rat offspring. Am J Physiol Regul Integr Comp Physiol. 2005;288:R368-R373.

    Article  PubMed  CAS  Google Scholar 

  37. Forsen T, Eriksson JG, Tuomilehto J, Teramo K, Osmond C, Barker DJP. Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ. 1997;315:837-840.

    Article  PubMed  CAS  Google Scholar 

  38. Gale CR, Javaid MK, Robinson SM, Law CM, Godfrey KM, Cooper C. Maternal size in pregnancy and body composition in children. J Clin Endocrinol Metab. 2007;92:3904-3911.

    Article  PubMed  CAS  Google Scholar 

  39. Galili O, Versari D, Sattler KJ, et al. Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol. 2007;292:H904-H911.

    Article  PubMed  CAS  Google Scholar 

  40. Gheorghe CP, Goyal R, Holweger JD, Longo LD. Placental gene expression responses to maternal protein restriction in the mouse. Placenta. 2009;30:411-417.

    Article  PubMed  CAS  Google Scholar 

  41. Gidekel S, Bergman Y. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J Biol Chem. 2002;277:34521-34530.

    Article  PubMed  CAS  Google Scholar 

  42. Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305: 1733-1736.

    Article  PubMed  CAS  Google Scholar 

  43. Gluckman PD, Hanson MA. Maternal constraint of fetal growth and its consequences. Semin Fetal Neonatal Med. 2004;9:419-425.

    Article  PubMed  Google Scholar 

  44. Gluckman PD, Hanson MA. The developmental origins of the metabolic syndrome. Trends Endocrinol Metab. 2004; 15:183-187.

    Article  PubMed  CAS  Google Scholar 

  45. Gluckman PD, Hanson MA. The fetal matrix: evolution, development, and disease. Cambridge, UK: Cambridge University Press; 2005.

    Google Scholar 

  46. Gluckman PD, Hanson MA. Mismatch; how our world no longer fits our bodies. Oxford: Oxford University Press; 2006.

    Google Scholar 

  47. Gluckman PD, Hanson MA. Evolution, development and timing of puberty. Trends Endocrinol Metab. 2006;17:7-12.

    Article  PubMed  CAS  Google Scholar 

  48. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease; a life history and evolutionary perspective. Am J Hum Biol. 2007;19:1-19.

    Article  PubMed  Google Scholar 

  49. Gluckman PD, Hanson MA, Beedle AS. Non-genomic transgenerational inheritance of disease risk. BioEssays. 2007;29:145-154.

    Article  PubMed  CAS  Google Scholar 

  50. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61-73.

    Article  PubMed  CAS  Google Scholar 

  51. Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive responses and human evolution. Trends Ecol Evol. 2005;20:527-533.

    Article  PubMed  Google Scholar 

  52. Gluckman PD, Hanson MA, Spencer HG, Bateson P. Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc R Soc Lond B. 2005;272:671-677. Containing papers of a Biological character. Royal Society (Great Britain).

    Article  Google Scholar 

  53. Gluckman PD, Lillycrop KA, Vickers MH, et al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA. 2007;104:12796-12800.

    Article  PubMed  CAS  Google Scholar 

  54. Gnanalingham MG, Mostyn A, Dandrea J, Yakubu DP, Symonds ME, Stephenson T. Ontogeny and nutritional programming of uncoupling protein-2 and glucocorticoid receptor mRNA in the ovine lung. J Physiol. 2005;565:159-169.

    Article  PubMed  CAS  Google Scholar 

  55. Godfrey KM. The “Developmental Origins” hypothesis: epidemiology. In: Hanson MA, Gluckman PD, eds. Developmental Origins of Health and Disease – A Biomedical Perspective. Cambridge, UK: Cambridge University Press; 2006:6-32.

    Chapter  Google Scholar 

  56. Godfrey KM, Gluckman PD, Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab. 2010;21(4): 199-205.

    Article  PubMed  CAS  Google Scholar 

  57. Grainger RM, Hazard-Leonards RM, Samaha F, Hougan LM, Lesk MR, Thomsen GH. Is hypomethylation linked to activation of delta-crystallin genes during lens development? Nature. 1983;306:88-91.

    Article  PubMed  CAS  Google Scholar 

  58. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473-478.

    PubMed  CAS  Google Scholar 

  59. Hanson MA, Gluckman PD. Developmental processes and the induction of cardiovascular function: conceptual aspects. J Physiol. 2005;565:27-34.

    Article  PubMed  CAS  Google Scholar 

  60. Hatch EE, Troisi R, Wise LA, et al. Age at natural menopause in women exposed to diethylstilbestrol in utero. Am J Epidemiol. 2006;164:682-688.

    Article  PubMed  Google Scholar 

  61. Hawkins P, Steyn C, McGarrigle HH, et al. Effect of maternal nutrient restriction in early gestation on responses of the hypothalamic-pituitary-adrenal axis to acute isocapnic hypoxaemia in late gestation fetal sheep. Exp Physiol. 2000;85:85-96.

    Article  PubMed  CAS  Google Scholar 

  62. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA.2008;105:17046-17049.

    Article  PubMed  CAS  Google Scholar 

  63. Herrick K, Phillips DI, Haselden S, Shiell AW, Campbell-Brown M, Godfrey KM. Maternal consumption of a high-meat, low-carbohydrate diet in late pregnancy: relation to adult cortisol concentrations in the offspring. J Clin Endocrinol Metab. 2003;88:3554-3560.

    Article  PubMed  CAS  Google Scholar 

  64. Hershko AY, Kafri T, Fainsod A, Razin A. Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene. 2003;302:65-72.

    Article  PubMed  CAS  Google Scholar 

  65. Hofman PL, Regan F, Jackson WE, et al. Premature birth and later insulin resistance. N Engl J Med. 2004;351:2179-2186.

    Article  PubMed  CAS  Google Scholar 

  66. Hollingsworth JW, Maruoka S, Boon K, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest. 2008;118:3462-3469.

    PubMed  CAS  Google Scholar 

  67. Hoppe CC, Evans RG, Moritz KM, et al. Combined prenatal and postnatal protein restriction influences adult kidney structure, function and arterial pressure. Am J Physiol. 2007;292:R462-R469.

    CAS  Google Scholar 

  68. Hovi P, Andersson S, Eriksson JG, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med. 2007;356:2053-2063.

    Article  PubMed  CAS  Google Scholar 

  69. Huxley R, Owen C, Whincup P, Cook D, Rich-Edwards J, Smith G. Is birthweight a risk factor for coronary heart disease in later life? J Epidemiol. 2007;85:1244-1250.

    CAS  Google Scholar 

  70. Jablonka E, Oborny B, Molnar I, Kisdi E, Hofbauer J, Czaran T. The adaptive advantage of phenotypic memory in changing environments. Philos Trans R Soc Lond B Biol Sci. 1995;350:133-141.

    Article  PubMed  CAS  Google Scholar 

  71. Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol. 2009;84:131-176.

    Article  PubMed  Google Scholar 

  72. Jackson AA, Dunn RL, Marchand MC, Langley-Evans SC. Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. Clin Sci (Lond). 2002;103:633-639.

    CAS  Google Scholar 

  73. Jackson-Grusby L, Beard C, Possemato R, et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet. 2001;27:31-39.

    Article  PubMed  CAS  Google Scholar 

  74. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245-254.

    Article  PubMed  CAS  Google Scholar 

  75. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet. 2002;10:682-688.

    Article  PubMed  CAS  Google Scholar 

  76. Khan I, Dekou V, Hanson M, Poston L, Taylor P. Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation. 2004;110:1097-1102.

    Article  PubMed  CAS  Google Scholar 

  77. Kind KL, Clifton PM, Katsman AI, Tsiounis M, Robinson JS, Owens JA. Restricted fetal growth and the response to dietary cholesterol in the guinea pig. Am J Physiol. 1999;277:R1675-R1682.

    PubMed  CAS  Google Scholar 

  78. Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319:1827-1830.

    Article  PubMed  CAS  Google Scholar 

  79. Kuzawa CW. Adipose tissue in human infancy and childhood: an evolutionary perspective. Yearb Phys Anthropol. 1998;41:177-209.

    Article  Google Scholar 

  80. Kuzawa CW. Developmental perspectives on the origin of obesity. In: Fantuzzi G, Mazzone T, eds. Adipose Tissue and Adipokines in Health and Disease. Totowa, NJ: Humana; 2007:207-219.

    Chapter  Google Scholar 

  81. Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127:4195-4202.

    PubMed  CAS  Google Scholar 

  82. Laforsch C, Tollrian R. Embryological aspects of inducible morphological defenses in Daphnia. J Morphol. 2004;262: 701-707.

    Article  PubMed  Google Scholar 

  83. Laird PW. Cancer epigenetics. Hum Mol Genet. 2005;14:R65-R76.

    Article  PubMed  CAS  Google Scholar 

  84. Lane N, Dean W, Erhardt S, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis. 2003;35:88-93.

    Article  PubMed  CAS  Google Scholar 

  85. Langley SC, Jackson AA. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci (Lond). 1994;86:217-222.

    CAS  Google Scholar 

  86. Lee TM, Zucker I. Vole infant development is influenced perinatally by maternal photoperiodic history. Am J Physiol. 1988;255:R831-R838.

    PubMed  CAS  Google Scholar 

  87. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3:662-673.

    Article  PubMed  CAS  Google Scholar 

  88. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr. 2005;135:1382-1386.

    PubMed  CAS  Google Scholar 

  89. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction in the pregnant rat induces altered epigenetic regulation of the glucocorticoid receptor and peroxisomal proliferator-activated receptor alpha in the heart of the offspring which is prevented by folic acid. Proc Nutr Soc. 2006;65:65A.

    Google Scholar 

  90. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARalpha promoter of the offspring. Br J Nutr. 2008;100:278-282.

    Article  PubMed  CAS  Google Scholar 

  91. Lillycrop KA, Rodford J, Garratt ES, et al. Maternal protein restriction with or without folic acid supplementation during pregnancy alters the hepatic transcriptome in adult male rats. Br J Nutr. 2010;103(12):1711-1719.

    Article  PubMed  CAS  Google Scholar 

  92. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97:1064-1073.

    Article  PubMed  CAS  Google Scholar 

  93. Lister AM. The impact of quaternary ice ages on mammalian evolution. Philos Trans R Soc Lond B Biol Sci. 2004; 359:221-241.

    Article  PubMed  Google Scholar 

  94. Lopatina N, Haskell JF, Andrews LG, Poole JC, Saldanha S, Tollefsbol T. Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts. J Cell Biochem. 2002;84:324-334.

    Article  PubMed  CAS  Google Scholar 

  95. Maleszka R. Epigenetic integration of environmental and genomic signals in honey bees. Epigenetics. 2008;3:188-192.

    Article  PubMed  Google Scholar 

  96. Maloney CA, Gosby AK, Phuyal JL, Denyer GS, Bryson JM, Caterson ID. Site-specific changes in the expression of fat-partitioning genes in weanling rats exposed to a low-protein diet in utero. Obes Res. 2003;11:461-468.

    Article  PubMed  CAS  Google Scholar 

  97. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747-753.

    Article  PubMed  CAS  Google Scholar 

  98. Martin JF, Johnston CS, Han CT, Benyshek DC. Nutritional origins of insulin resistance: a rat model for diabetes-prone human populations. J Nutr. 2000;130:741-744.

    PubMed  CAS  Google Scholar 

  99. Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature. 2000;403:501-502.

    Article  PubMed  CAS  Google Scholar 

  100. McGowan PO, Sasaki A, Huang TC, et al. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS ONE. 2008;3:e2085.

    Article  PubMed  CAS  Google Scholar 

  101. Milutinovic S, Zhuang Q, Niveleau A, Szyf M. Epigenomic stress response. Knockdown of DNA methyltransferase 1 triggers an intra-S-phase arrest of DNA replication and induction of stress response genes. J Biol Chem. 2003; 278:14985-14995.

    Article  PubMed  CAS  Google Scholar 

  102. Moran NA. The evolutionary maintenance of alternative phenotypes. Am Nat. 1992;139:971-989.

    Article  Google Scholar 

  103. Morison IM, Paton CJ, Cleverley SD. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 2001;29:275-276.

    Article  PubMed  CAS  Google Scholar 

  104. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y. A role for the elongator complex in zygotic paternal genome demethylation. Nature. 2010;463(7280):554-558. doi:10.1038/nature08732.

    Article  PubMed  CAS  Google Scholar 

  105. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99: 247-257.

    Article  PubMed  CAS  Google Scholar 

  106. Oswald J, Engemann S, Lane N, et al. Active demethylation of the paternal genome in the mouse zygote. Curr Biol. 2000;10:475-478.

    Article  PubMed  CAS  Google Scholar 

  107. Palmer JR, Wise LA, Hatch EE, et al. Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:1509-1514.

    Article  PubMed  CAS  Google Scholar 

  108. Pembrey ME, Bygren LO, Kaati G, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14:159-166.

    Article  PubMed  Google Scholar 

  109. Pener MP, Yerushalmi Y. The physiology of locust phase polymorphism: an update. J Insect Physiol. 1998;44:365-377.

    Article  PubMed  CAS  Google Scholar 

  110. Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH. Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol. 2003;285:R962-R970.

    CAS  Google Scholar 

  111. Popkin BM. Nutrition in transition: the changing global nutrition challenge. Asia Pac J Clin Nutr. 2001;10:S13-S18.

    PubMed  Google Scholar 

  112. Prentice AM, Moore SE. Early programming of adult diseases in resource poor countries. Arch Dis Child. 2005;90:429-432.

    Article  PubMed  CAS  Google Scholar 

  113. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21-32.

    Article  PubMed  CAS  Google Scholar 

  114. Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 2000;404:1003-1007.

    Article  PubMed  CAS  Google Scholar 

  115. Richardson B. Impact of aging on DNA methylation. Ageing Res Rev. 2003;2:245-261.

    Article  PubMed  CAS  Google Scholar 

  116. Roseboom T, de Rooji S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82:485-491.

    Article  PubMed  Google Scholar 

  117. Sellayah D, Sek K, Anthony FW, et al. Appetite regulatory mechanisms and food intake in mice are sensitive to mismatch in diets between pregnancy and postnatal periods. Brain Res. 2008;1237:146-152.

    Article  PubMed  CAS  Google Scholar 

  118. Shiell AW, Campbell-Brown M, Haselden S, Robinson S, Godfrey KM, Barker DJ. High-meat, low-carbohydrate diet in pregnancy: relation to adult blood pressure in the offspring. Hypertension. 2001;38:1282-1288.

    Article  PubMed  CAS  Google Scholar 

  119. Silverman BL, Purdy LP, Metzger BE. The intrauterine environment: implications for the offspring of diabetic mothers. Diab Rev. 1996;4:21-35.

    Google Scholar 

  120. Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol. 2008;25:2-6.

    Article  PubMed  CAS  Google Scholar 

  121. Sloboda DM, Hart R, Doherty DA, Pennell CE, Hickey M. Age at menarche: influences of prenatal and postnatal growth. J Clin Endocrinol Metab. 2007;92:46-50.

    Article  PubMed  CAS  Google Scholar 

  122. Sloboda DM, Howie GJ, Pleasants A, Gluckman PD, Vickers MH. Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS ONE. 2009;4:e6744.

    Article  PubMed  CAS  Google Scholar 

  123. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS ONE. 2009;4:e7845.

    Article  PubMed  CAS  Google Scholar 

  124. Stein AD, Lumey LH. The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol. 2000;72:641-654.

    PubMed  CAS  Google Scholar 

  125. Suetake I, Shi LH, Watanabe D, Nakamura M, Tajima S. Proliferation stage-dependent expression of DNA methyltransferase (Dnmt1) in mouse small intestine. Cell Struct Funct. 2001;26:79-86.

    Article  PubMed  CAS  Google Scholar 

  126. Sultan SE, Spencer HG. Metapopulation structure favors plasticity over local adaptation. Am Nat. 2002;160:271-283.

    Article  PubMed  Google Scholar 

  127. Temple IK. Imprinting in human disease with special reference to transient neonatal diabetes and Beckwith–Wiedemann syndrome. Endocr Dev. 2007;12:113-123.

    Article  PubMed  CAS  Google Scholar 

  128. Tobi EW, Lumey LH, Talens RP, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009; 18(21):4046-4053.

    Article  PubMed  CAS  Google Scholar 

  129. Tollefsbol TO, Andrews LG. Mechanisms for telomerase gene control in aging cells and tumorigenesis. Med Hypotheses. 2001;56:630-637.

    Article  PubMed  CAS  Google Scholar 

  130. Torrens C, Brawley L, Anthony FW, et al. Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. Hypertension. 2006;47:982-987.

    Article  PubMed  CAS  Google Scholar 

  131. Torrens C, Poston L, Hanson MA. Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr. 2008;100:760-766.

    Article  PubMed  CAS  Google Scholar 

  132. Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Physiol. 2002;192:245-258.

    Article  PubMed  CAS  Google Scholar 

  133. Uller T. Developmental plasticity and the evolution of parental effects. Trends Ecol Evol. 2008;23:432-438.

    Article  PubMed  Google Scholar 

  134. Vasicek TJ, Zeng L, Guan XJ, Zhang T, Costantini F, Tilghman SM. Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics. 1997;147:777-786.

    PubMed  CAS  Google Scholar 

  135. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279:E83-E87.

    PubMed  CAS  Google Scholar 

  136. Vickers MH, Gluckman PD, Coveny AH, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146:4211-4216.

    Article  PubMed  CAS  Google Scholar 

  137. Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563-565.

    Article  Google Scholar 

  138. Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature. 1959;183:1654-1655.

    Article  PubMed  CAS  Google Scholar 

  139. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG. Maternal methyl supplements increase offspring DNA methylation at axin fused. Genesis. 2006; 44:401-406.

    Article  PubMed  CAS  Google Scholar 

  140. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23:5293-5300.

    Article  PubMed  CAS  Google Scholar 

  141. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004; 20:63-68.

    Article  PubMed  CAS  Google Scholar 

  142. Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond). 2008;32:1373-1379.

    Article  CAS  Google Scholar 

  143. Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847-854.

    Article  PubMed  CAS  Google Scholar 

  144. West-Eberhard MJ. Alternative adaptations, speciation, and phylogeny (A Review). Proc Natl Acad Sci USA. 1986;83:1388-1392.

    Article  PubMed  CAS  Google Scholar 

  145. West-Eberhard MJ. Developmental plasticity and evolution. New York: Oxford University Press; 2003.

    Google Scholar 

  146. Whorwood CB, Firth KM, Budge H, Symonds ME. Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin II receptor in neonatal sheep. Endocrinology. 2001;142:2854-2864.

    Article  PubMed  CAS  Google Scholar 

  147. Winick M, Noble A. Cellular response in rats during malnutrition at various ages. J Nutr. 1966;89:300-306.

    PubMed  CAS  Google Scholar 

  148. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12:949-957.

    PubMed  CAS  Google Scholar 

  149. Woodall SM, Johnston BM, Breier BH, Gluckman PD. Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr Res. 1996;40:438-443.

    Article  PubMed  CAS  Google Scholar 

  150. World Health Organization. Promoting optimal fetal development. Geneva: World Health Organization; 2006. http://www.who.int/nutrition/topics/fetal_dev_report_EN.pdf.

    Google Scholar 

  151. World Health Organization. 2008–2013 Action plan for the global strategy for the prevention and control of noncommunicable diseases. Geneva: World Health Organization; 2008.

    Google Scholar 

  152. Xie H, Wang M, Bonaldo Mde F, et al. High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum. Nucleic Acids Res. 2009;37:4331-4340.

    Article  PubMed  CAS  Google Scholar 

  153. Zambrano E, Martínez-Samayoa PM, Bautista CJ, et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F-2) of female offspring (F-1) of rats fed a low protein diet during pregnancy and lactation. J Physiol (Lond). 2005;566:225-236.

    Article  CAS  Google Scholar 

  154. Zhang J, Zhang F, Didelot X, et al. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics. 2009;10:478.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments Research by the authors is supported by the Biotechnology and Biological Sciences Research Council, the Medical Research Council, the British Heart Foundation, the National Institute for Health Research Southampton Nutrition, Diet and Lifestyle Biomedical Research Unit, Wessex Medical Research, and the Gerald Kerkut Charitable Trust. The authors are not aware of any conflicts of interest that may be perceived as affecting the objectivity of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Godfrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Godfrey, K.M., Lillycrop, K.A., Hanson, M.A., Burdge, G.C. (2011). Epigenetic Mechanisms in the Developmental Origins of Adult Disease. In: Roach, H., Bronner, F., Oreffo, R. (eds) Epigenetic Aspects of Chronic Diseases. Springer, London. https://doi.org/10.1007/978-1-84882-644-1_13

Download citation

Publish with us

Policies and ethics