Skip to main content

Epigenetics in Psychiatry

  • Chapter
  • First Online:
Book cover Epigenetic Aspects of Chronic Diseases

Abstract

Diversity, perhaps the most prominent aspect of life, is consistent with the Darwinian theory of evolution, the result of random mutation. Yet the diversity of cells and tissues during the development of a single animal (even though the genetic make-up of all cells of an organism is constant) obviously cannot be attributed to random mutations. While the Lamarckian concept of species development is not considered as a valid explanation of evolution, it may offer clues about the origin of diversity in the development of many cells that make up a single organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdolmaleky HM, Cheng KH, Faraone SV, et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15(21):3132-3145.

    Article  PubMed  CAS  Google Scholar 

  2. Abdolmaleky HM, Cheng KH, Russo A, et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134(1):60-66.

    Google Scholar 

  3. Abdolmaleky HM, Smith CL, Faraone SV, et al. Methylomics in psychiatry: modulation of gene-environment interactions may be through DNA methylation. Am J Med Genet B Neuropsychiatr Genet. 2004;127B(1):51-59.

    Article  PubMed  Google Scholar 

  4. Abdolmaleky HM, Zhou JR, Thiagalingam S, Smith CL. Epigenetic and pharmacoepigenomic studies of major psychoses and potentials for therapeutics. Pharmacogenomics. 2008;9(12):1809-1823. Review.

    Article  PubMed  CAS  Google Scholar 

  5. Akbarian S. The neurobiology of Rett syndrome. Neuroscientist. 2003;9(1):57-63.

    Article  PubMed  CAS  Google Scholar 

  6. Akbarian S, Jiang Y, Laforet G. The molecular pathology of rett syndrome: synopsis and update. Neuromolecular Med. 2006;8(4):485-494.

    Article  PubMed  CAS  Google Scholar 

  7. Akbarian S, Ruehl MG, Bliven E, et al. Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry. 2005;62(8):829-840.

    Article  PubMed  CAS  Google Scholar 

  8. Angrilli A, Spironelli C, Elbert T, Crow TJ, Marano G, Stegagno L. Schizophrenia as failure of left hemispheric dominance for the phonological component of language. PLoS One. 2009;4(2):e4507.

    Article  PubMed  CAS  Google Scholar 

  9. Aston C, Jiang L, Sokolov BP. Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res. 2004;77(6):858-866.

    Article  PubMed  CAS  Google Scholar 

  10. Bangalore SS, Goradia DD, Nutche J, Diwadkar VA, Prasad KM, Keshavan MS. Untreated illness duration correlates with gray matter loss in first-episode psychoses. Neuroreport. 2009;20(7):729-734.

    Article  PubMed  Google Scholar 

  11. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA. 2007;104(24):10164-10169.

    Article  PubMed  CAS  Google Scholar 

  12. Bernstein HG, Braunewell KH, Spilker C, et al. Hippocampal expression of the calcium sensor protein visinin-like protein-1 in schizophrenia. Neuroreport. 2002;13(4):393-396.

    Article  PubMed  CAS  Google Scholar 

  13. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395-2402.

    Article  PubMed  CAS  Google Scholar 

  14. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry. 2010;5(12):1176-1189.

    Google Scholar 

  15. Beveridge NJ, Tooney PA, Carroll AP, et al. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet. 2008;17(8):1156-1168.

    Article  PubMed  CAS  Google Scholar 

  16. Biermann T, Reulbach U, Lenz B, et al. N-methyl-D-aspartate 2b receptor subtype (NR2B) promoter methylation in patients during alcohol withdrawal. J Neural Transm. 2009;116(5):615-622.

    Article  PubMed  CAS  Google Scholar 

  17. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6-21.

    Article  PubMed  CAS  Google Scholar 

  18. Bird A. The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem Soc Trans. 2008;36(Pt 4):575-583.

    Article  PubMed  CAS  Google Scholar 

  19. Bleich S, Lenz B, Ziegenbein M, et al. Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcohol Clin Exp Res. 2006;30:587-591.

    Article  PubMed  CAS  Google Scholar 

  20. Bonsch D, Lenz B, Kornhuber J, Bleich S. DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport. 2005;16:167-170.

    Article  PubMed  Google Scholar 

  21. Bowden NA, Scott RJ, Tooney PA. Altered gene expression in the superior temporal gyrus in schizophrenia. BMC Genomics. 2008;9:199.

    Article  PubMed  CAS  Google Scholar 

  22. Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem. 2007;14(4):268-276.

    Article  PubMed  CAS  Google Scholar 

  23. Bromberg A, Bersudsky Y, Levine J, Agam G. Global leukocyte DNA methylation is not altered in euthymic bipolar patients. J Affect Disord. 2009;118(1–3):234-239.

    Article  PubMed  CAS  Google Scholar 

  24. Brown AS, Bottiglieri T, Schaefer CA, et al. Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Arch Gen Psychiatry. 2007;64(1):31-39.

    Article  PubMed  CAS  Google Scholar 

  25. Chen H, Wang N, Burmeister M, McInnis MG. MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol. 2009;2:1-7.

    Google Scholar 

  26. Chertkow-Deutsher Y, Cohen H, Klein E, Ben-Shachar D. DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. Int J Neuropsychopharmacol. 2010;13(3):347-359.

    Google Scholar 

  27. Crow TJ. How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. Am J Psychiatry. 2007;164(1):13-21. Review.

    Article  PubMed  Google Scholar 

  28. Crow TJ. Craddock & Owen vs Kraepelin 85 years late, mesmerised by “polygenes”. Schizophr Res. 2008;103(1–3):156-160.

    Article  PubMed  CAS  Google Scholar 

  29. Crow TJ. A theory of the origin of cerebral asymmetry: epigenetic variation superimposed on a fixed right-shift. Laterality. 2009;13:1-15.

    Google Scholar 

  30. Crow TJ, Ball J, Bloom SR, et al. Schizophrenia as an anomaly of development of cerebral asymmetry. A postmortem study and a proposal concerning the genetic basis of the disease. Arch Gen Psychiatry. 1989;46(12):1145-1150.

    Article  PubMed  CAS  Google Scholar 

  31. Cullen TJ, Walker MA, Eastwood SL, Esiri MM, Harrison PJ, Crow TJ. Anomalies of asymmetry of pyramidal cell density and structure in dorsolateral prefrontal cortex in schizophrenia. Br J Psychiatry. 2006;188:26-31.

    Article  PubMed  Google Scholar 

  32. De Luca V, Viggiano E, Dhoot R, Kennedy JL, Wong AH. Methylation and QTDT analysis of the 5-HT2A receptor 102C allele: analysis of suicidality in major psychosis. J Psychiatr Res. 2009;43(5):532-537.

    Article  PubMed  Google Scholar 

  33. de Vries BB, Jansen CC, Duits AA, et al. Variable FMR1 gene methylation of large expansions leads to variable phenotype in three males from one fragile X family. J Med Genet. 1996;33(12):1007-1010.

    Article  PubMed  Google Scholar 

  34. Feng J, Sun G, Yan J, et al. Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One. 2009;4(7):e6121.

    Article  PubMed  CAS  Google Scholar 

  35. Filion GJ, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol. 2006;26(1):169-181.

    Article  PubMed  CAS  Google Scholar 

  36. Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci. 2004;29(5):243-249.

    Article  PubMed  CAS  Google Scholar 

  37. Frieling H, Römer KD, Scholz S, et al. Epigenetic dysregulation of dopaminergic genes in eating disorders. Int J Eat Disord. 2010;43(7):577-583.

    Article  PubMed  Google Scholar 

  38. Fuchikami M, Morinobu S, Kurata A, Yamamoto S, Yamawaki S. Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. Int J Neuropsychopharmacol. 2009;12(1):73-82.

    Article  PubMed  CAS  Google Scholar 

  39. Gavin DP, Kartan S, Chase K, Grayson DR, Sharma RP. Reduced baseline acetylated histone 3 levels, and a blunted response to HDAC inhibition in lymphocyte cultures from schizophrenia subjects. Schizophr Res. 2008;103:330-332.

    Article  PubMed  Google Scholar 

  40. Gavin DP, Kartan S, Chase K, Jayaraman S, Sharma RP. Histone deacetylase inhibitors and candidate gene expression: an in vivo and in vitro approach to studying chromatin remodeling in a clinical population. J Psychiatr Res. 2009;43(9):870-876.

    Article  PubMed  Google Scholar 

  41. Gavin DP, Rosen C, Chase K, Grayson DR, Tun N, Sharma RP. Dimethylated lysine 9 of histone 3 is elevated in schizophrenia and exhibits a divergent response to histone deacetylase inhibitors in lymphocyte cultures. J Psychiatry Neurosci. 2009;34(3):232-237.

    PubMed  Google Scholar 

  42. Glatt SJ, Everall IP, Kremen WS, et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA. 2005;102(43):15533-15538.

    Article  PubMed  CAS  Google Scholar 

  43. Grayson DR, Jia X, Chen Y, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA. 2005;102(26):9341-9346.

    Article  PubMed  CAS  Google Scholar 

  44. Guidotti A, Dong E, Kundakovic M, Satta R, Grayson DR, Costa E. Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends Pharmacol Sci. 2009;30(2):55-60.

    Article  PubMed  CAS  Google Scholar 

  45. Guidotti A, Ruzicka W, Grayson DR, et al. S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. Neuroreport. 2007;18(1):57-60.

    Article  PubMed  CAS  Google Scholar 

  46. Hillemacher T, Frieling H, Hartl T, Wilhelm J, Kornhuber J, Bleich S. Promoter specific methylation of the dopamine transporter gene is altered in alcohol dependence and associated with craving. J Psychiatr Res. 2009;43(4):388-392.

    Article  PubMed  Google Scholar 

  47. Hillemacher T, Frieling H, Moskau S, et al. Global DNA methylation is influenced by smoking behaviour. Eur Neuropsychopharmacol. 2008;18(4):295-298.

    Article  PubMed  CAS  Google Scholar 

  48. Hobara T, Uchida S, Otsuki K, et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res. 2010;44(5):263-270.

    Article  PubMed  Google Scholar 

  49. Huang HS, Matevossian A, Whittle C, et al. Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci. 2007;27(42):11254-11262.

    Article  PubMed  CAS  Google Scholar 

  50. Issidorides MR, Stefanis CN, Varsou E, Katsorchis T. Altered chromatin ultrastructure in neutrophils of schizophrenics. Nature. 1975;258(5536):612-614.

    Article  PubMed  CAS  Google Scholar 

  51. Iwamoto K, Bundo M, Yamada K, et al. DNA methylation status of SOX10 correlates with its downregulation and oligodendrocyte dysfunction in schizophrenia. J Neurosci. 2005;25(22):5376-5381.

    Article  PubMed  CAS  Google Scholar 

  52. Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T. Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry. 2004;9(4):406-416.

    Article  PubMed  CAS  Google Scholar 

  53. James SJ, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004;80(6):1611-1617.

    PubMed  CAS  Google Scholar 

  54. James SJ, Melnyk S, Jernigan S, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(8):947-956.

    Article  PubMed  CAS  Google Scholar 

  55. James SJ, Melnyk S, Jernigan S, Hubanks A, Rose S, Gaylor DW. Abnormal Transmethylation/transsulfuration Metabolism and DNA Hypomethylation Among Parents of Children with Autism. J Autism Dev Disord. 2008;38(10):1966-1975.

    Article  PubMed  Google Scholar 

  56. Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S. Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. Embo J. 2002;21:4183-4195.

    Article  PubMed  CAS  Google Scholar 

  57. Kouzarides T, Berger SL. Chromatin modifications and their mechanisms of action. In: Allis CD, Jenuwein T, Reinberg D, eds. Epigenetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2007:191-197.

    Google Scholar 

  58. Kuratomi G, Iwamoto K, Bundo M, et al. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry. 2008;13(4):429-441.

    Article  PubMed  CAS  Google Scholar 

  59. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315-322.

    Article  PubMed  CAS  Google Scholar 

  60. Liu HC, Hu CJ, Tang YC, Chang JG. A pilot study for circadian gene disturbance in dementia patients. Neurosci Lett. 2008;435(3):229-233.

    Article  PubMed  CAS  Google Scholar 

  61. Malaspina D, Perrin M, Kleinhaus KR, Opler M, Harlap S. Growth and schizophrenia: aetiology, epidemiology and epigenetics. Novartis Found Symp. 2008;289:196-203. discussion 203–7:238–40. Review.

    Article  PubMed  CAS  Google Scholar 

  62. Malmgren H, Steén-Bondeson ML, Gustavson KH, et al. Methylation and mutation patterns in the fragile X syndrome. Am J Med Genet. 1992;43(1–2):268-278.

    Article  PubMed  CAS  Google Scholar 

  63. Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science. 2003;302(5646):890-893.

    Article  PubMed  CAS  Google Scholar 

  64. McCarthy MM, Auger AP, Bale TL, et al. The epigenetics of sex differences in the brain. J Neurosci. 2009;29(41):12815-12823. Review.

    Article  PubMed  CAS  Google Scholar 

  65. McGowan PO, Meaney MJ, Szyf M. Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res. 2008;1237:12-24.

    Article  PubMed  CAS  Google Scholar 

  66. McGowan PO, Sasaki A, D’Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342-348.

    Article  PubMed  CAS  Google Scholar 

  67. McGowan PO, Sasaki A, Huang TC, et al. Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One. 2008;3(5):e2085.

    Article  PubMed  CAS  Google Scholar 

  68. McGowan PO, Szyf M. The epigenetics of social adversity in early life: implications for mental health outcomes. Neurobiol Dis. 2010;39(1):66-72.

    Article  PubMed  Google Scholar 

  69. Meda SA, Giuliani NR, Calhoun VD, et al. A large scale (N=400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry. Schizophr Res. 2008;101(1–3):95-105.

    Article  PubMed  Google Scholar 

  70. Mill J, Tang T, Kaminsky Z, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet. 2008;82(3):696-711.

    Article  PubMed  CAS  Google Scholar 

  71. Monk M. Epigenetic programming of differential gene expression in development and evolution. Dev Genet. 1995;17:188-197.

    Article  PubMed  CAS  Google Scholar 

  72. Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry. 2006;11(2):143-149.

    Article  PubMed  CAS  Google Scholar 

  73. Nelson ED, Kavalali ET, Monteggia LM. Activity-dependent suppression of miniature neurotransmission through the regulation of DNA methylation. J Neurosci. 2008;28(2):395-406.

    Article  PubMed  CAS  Google Scholar 

  74. Okamura K, Lai EC. Endogenous small interfering RNAs in animals. Nat Rev Mol Cell Biol. 2008;9(9):673-678.

    Article  PubMed  CAS  Google Scholar 

  75. Park CS, Tang SJ. Regulation of microRNA expression by induction of bidirectional synaptic plasticity. J Mol Neurosci. 2009;38(1):50-56.

    Article  PubMed  CAS  Google Scholar 

  76. Pedrosa E, Locker J, Lachman HM. Survey of schizophrenia and bipolar disorder candidate genes using chromatin immunoprecipitation and tiled microarrays (ChIP-chip). J Neurogenet. 2009;23(3):341-352.

    Article  PubMed  CAS  Google Scholar 

  77. Perkins DO, Jeffries CD, Jarskog LF, et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 2007;8(2):R27.

    Article  PubMed  CAS  Google Scholar 

  78. Perrin MC, Brown AS, Malaspina D. Aberrant epigenetic regulation could explain the relationship of paternal age to schizophrenia. Schizophr Bull. 2007;33(6):1270-1273.

    Article  PubMed  Google Scholar 

  79. Philibert RA, Beach SR, Gunter TD, Brody GH, Madan A, Gerrard M. The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):619-628.

    PubMed  CAS  Google Scholar 

  80. Philibert RA, Sandhu H, Hollenbeck N, Gunter T, Adams W, Madan A. The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(5):543-549.

    Article  PubMed  CAS  Google Scholar 

  81. Popendikyte V, Laurinavicius A, Paterson AD, Macciardi F, Kennedy JL, Petronis A. DNA methylation at the putative promoter region of the human dopamine D2 receptor gene. Neuroreport. 1999;10(6):1249-1255.

    Article  PubMed  CAS  Google Scholar 

  82. Poulter MO, Du L, Weaver IC, et al. GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes. Biol Psychiatry. 2008;64(8):645-652.

    Article  PubMed  CAS  Google Scholar 

  83. Prasad KM, Keshavan MS. Structural cerebral variations as useful endophenotypes in schizophrenia: do they help construct “extended endophenotypes”? Schizophr Bull. 2008;34(4):774-790. Review.

    Article  PubMed  Google Scholar 

  84. Purcell SM, Wray NR, Stone JL, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. International Schizophrenia Consortium. Nature. 2009;460(7256):748-752.

    PubMed  CAS  Google Scholar 

  85. Rockstroh B, Clementz BA, Pantev C, Blumenfeld LD, Sterr A, Elbert T. Failure of dominant left-hemispheric activation to right-ear stimulation in schizophrenia. Neuroreport. 1998;9(17):3819-3822.

    Article  PubMed  CAS  Google Scholar 

  86. Rosa A, Picchioni MM, Kalidindi S, et al. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(4):459-462.

    Article  PubMed  Google Scholar 

  87. Russo V, Martienssen R, Riggs A. Epigenetic Mechanisms of Gene Regulation. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1996.

    Google Scholar 

  88. Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry. 2007;12(4):385-397.

    Article  PubMed  CAS  Google Scholar 

  89. Sakamoto S, Aoki K, Higuchi T, et al. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol. 2009;29(13):37543769.

    Article  PubMed  CAS  Google Scholar 

  90. Satta R, Maloku E, Zhubi A, et al. Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci USA. 2008;105(42):16356-16361.

    Article  PubMed  CAS  Google Scholar 

  91. Sharma RP, Grayson DR, Gavin DP. Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the National Brain Databank microarray collection. Schizophr Res. 2008;98(1–3):111-117.

    Article  PubMed  Google Scholar 

  92. Sharma RP, Rosen C, Kartan S, et al. Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: preliminary results from a clinical population. Schizophr Res. 2006;88:227-231.

    Article  PubMed  Google Scholar 

  93. Sharma RP, Tun N, Grayson DR. Depolarization induces downregulation of DNMT1 and DNMT3a in primary cortical cultures. Epigenetics. 2008;3(2):74-80.

    Article  PubMed  Google Scholar 

  94. Shilatifard A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol. 2008;20(3):341-348.

    Article  PubMed  CAS  Google Scholar 

  95. Shimabukuro M, Sasaki T, Imamura A, et al. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia. J Psychiatr Res. 2007;41(12):1042-1046.

    Article  PubMed  Google Scholar 

  96. Siegmund KD, Connor CM, Campan M, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS ONE. 2007;2(9):e895.

    Article  PubMed  CAS  Google Scholar 

  97. Simonini MV, Camargo LM, Dong E, et al. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA. 2006;103(5):1587-1592.

    Article  PubMed  CAS  Google Scholar 

  98. Sommer IE, Diederen KM, Blom JD, et al. Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain. 2008;131(Pt 12):3169-3177.

    Article  PubMed  Google Scholar 

  99. Song S, Wang W, Hu P. Famine, death, and madness: schizophrenia in early adulthood after prenatal exposure to the Chinese Great Leap Forward Famine. Soc Sci Med. 2009;68(7):1315-1321. Epub 2009 Feb 14.

    Article  PubMed  Google Scholar 

  100. Stefanis CN, Issidorides MR. Histochemical changes in the blood cells of schizophrenic patients under pimozide treatment. Biol Psychiatry. 1976;11(1):53-68.

    PubMed  CAS  Google Scholar 

  101. Sun G, Yan J, Noltner K, et al. Sep;SNPs in human miRNA genes affect biogenesis and function. RNA. 2009;15(9):1640-1651.

    Article  PubMed  CAS  Google Scholar 

  102. Susser E, Neugebauer R, Hoek HW, et al. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry. 1996;53(1):25-31.

    Article  PubMed  CAS  Google Scholar 

  103. Sutcliffe JS, Nelson DL, Zhang F, et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1(6):397-400.

    Article  PubMed  CAS  Google Scholar 

  104. Szyf M. The early life environment and the epigenome. Biochim Biophys Acta. 2009;1790(9):878-885. Review.

    Article  PubMed  CAS  Google Scholar 

  105. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci. 2006;9(4):519-525.

    Article  PubMed  CAS  Google Scholar 

  106. Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci. 2004;24(24):5603-5610.

    Article  PubMed  CAS  Google Scholar 

  107. Tsuang MT, Gilbertson MW, Faraone SV. The genetics of schizophrenia. Current knowledge and future directions. Schizophr Res. 1991;4(2):157-171. Review.

    Article  PubMed  CAS  Google Scholar 

  108. Unterberger A, Szyf M, Nathanielsz PW, Cox LA. Organ and gestational age effects of maternal nutrient restriction on global methylation in fetal baboons. J Med Primatol. 2009;38(4):219-227.

    Article  PubMed  CAS  Google Scholar 

  109. Vaissière T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 2008;659(1–2):40-48.

    PubMed  Google Scholar 

  110. Vawter MP, Crook JM, Hyde TM, et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res. 2002;58(1):11-20.

    Article  PubMed  Google Scholar 

  111. Veldic M, Caruncho HJ, Liu WS, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci USA. 2004;101(1):348-353.

    Article  PubMed  CAS  Google Scholar 

  112. Venkatasubramanian G, Jayakumar PN, Gangadhar BN, Keshavan MS. Automated MRI parcellation study of regional volume and thickness of prefrontal cortex (PFC) in antipsychotic-naïve schizophrenia. Acta Psychiatr Scand. 2008;117(6):420-431.

    Article  PubMed  CAS  Google Scholar 

  113. Venkatasubramanian G, Jayakumar PN, Gangadhar BN, Keshavan MS. Neuroanatomical correlates of neurological soft signs in antipsychotic-naive schizophrenia. Psychiatry Res. 2008;164(3):215-222.

    Article  PubMed  Google Scholar 

  114. Waddington CH. Introduction to Modern Genetics. London: Allen & Unwin; 1939.

    Google Scholar 

  115. Walter H, Wunderlich AP, Blankenhorn M, et al. No hypofrontality, but absence of prefrontal lateralization comparing verbal and spatial working memory in schizophrenia. Schizophr Res. 2003;61(2–3):175-184.

    Article  PubMed  Google Scholar 

  116. Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;8:847-854.

    Article  CAS  Google Scholar 

  117. Weiss EM, Hofer A, Golaszewski S, et al. Brain activation patterns during a verbal fluency test-a functional MRI study in healthy volunteers and patients with schizophrenia. Schizophr Res. 2004;70(2–3):287-291.

    Article  PubMed  Google Scholar 

  118. Williams LM, Whitford TJ, Gordon E, Gomes L, Brown KJ, Harris AW. Neural synchrony in patients with a first episode of schizophrenia: tracking relations with grey matter and symptom profile. J Psychiatry Neurosci. 2009;34(1):21-29.

    PubMed  Google Scholar 

  119. Xu MQ, Sun WS, Liu BX, et al. Prenatal malnutrition and adult schizophrenia: further evidence from the 1959-1961 Chinese famine. Schizophr Bull. 2009;35(3):568-576.

    Article  PubMed  Google Scholar 

  120. Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry. 2009;14(1):51-59.

    Article  PubMed  CAS  Google Scholar 

  121. Yotsutsuji T, Saitoh O, Suzuki M, et al. Quantification of lateral ventricular subdivisions in schizophrenia by high-resolution three-dimensional magnetic resonance imaging. Psychiatry Res. 2003;122(1):1-12.

    Article  PubMed  Google Scholar 

  122. Zhou R, Yuan P, Wang Y, et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology. 2008;34(6):1395-1405.

    Article  PubMed  CAS  Google Scholar 

  123. Zhu Y, Kalbfleisch T, Brennan MD, Li Y. A MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophr Res. 2009;109(1–3):86-89.

    Article  PubMed  Google Scholar 

  124. Zschocke J, Allritz C, Engele J, Rein T. DNA methylation dependent silencing of the human glutamate transporter EAAT2 gene in glial cells. Glia. 2007;55(7):663-674.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming T. Tsuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Mostafavi-Abdolmaleky, H., Glatt, S.J., Tsuang, M.T. (2011). Epigenetics in Psychiatry. In: Roach, H., Bronner, F., Oreffo, R. (eds) Epigenetic Aspects of Chronic Diseases. Springer, London. https://doi.org/10.1007/978-1-84882-644-1_11

Download citation

Publish with us

Policies and ethics