Skip to main content

From Artificial Chemistries to Systems Biology

Software for Chemical Organization Theory

  • Chapter
Artificial Life Models in Software

Artificial Chemistries abstract from real-world chemistries by reducing them to systems of interacting and reacting molecules. They have been used to study phenomena in a wide array of fields like social and ecological modelling, evolution or chemical computing. Artificial Chemistries are inherently difficult to study and, thus, methods have been proposed to analyze their complexity. This chapter outlines how the concept of chemical organization and software dedicated at their analysis can help to ease this task. The chemical organizations of a reaction network correspond to sets of molecules that can coexist over long periods of (simulation-) time. Thus, they can be used to study the full dynamic behavior a system can exhibit without the need to simulate it in every detail. Due to this appealing property, Chemical Organization Theory has been used in the study of a wide array of systems ranging from Artificial Chemistries to real-world chemistries and biological systems. Especially the analysis of biological systems motivated an integration of the tools dedicated to the study of chemical organizations into an application framework from Systems Biology. The benefit of this integration is that tools from Systems Biology can be used without much effort along with the tools for the computation of chemical organizations and vice versa. Thus, software for the analysis of chemical organizations seamlessly integrates into a framework covering almost any aspect of network design and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banâtre, J.P., Métayer, D.L.: A new computational model and its discipline of programming. Tech. Rep. RR-0566, INRIA (1986)

    Google Scholar 

  2. Banâtre, J.P., Métayer, D.L.: The gamma model and its discipline of programming. Sci. Comput. Program. 15(1), 55–77 (1990)

    Article  MATH  Google Scholar 

  3. Berkelaar, M., Eikland, K., Notebaert, P.: lp solve: Open source (mixed-integer) linear programming system, version 5.5 (2005). URL http://tech.groups.yahoo. com/group/lp_solve/

  4. Centler, F., Fenizio, P., Matsumaru, N., Dittrich, P.: Chemical organizations in the central sugar metabolism of Escherichia coli. Math. Model. Biol. Syst. 1, 105–119 (2007)

    Article  Google Scholar 

  5. Centler, F., Kaleta, C., di Fenizio, P.S., Dittrich, P.: Computing chemical organizations in biological networks. Bioinformatics 24(14), 1611–1618 (2008)

    Article  Google Scholar 

  6. Chickarmane, V., Paladugu, S.R., Bergmann, F., Sauro, H.M.: Bifurcation discovery tool. Bioinformatics 21(18), 3688–3690 (2005)

    Article  Google Scholar 

  7. Dittrich, P., Matsumaru, N.: Organization-oriented chemical programming. In: Hybrid Intelligent Systems, 2007. HIS 2007. 7th International Conference on, pp. 18–23 (2007)

    Google Scholar 

  8. Dittrich, P., Speroni di Fenizio, P.: Chemical organization theory. Bull. Math. Biol. 69(4), 1199–1231 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries — a review. Artificial Life 7, 225–275 (2001)

    Article  Google Scholar 

  10. Drubin, D.A., Way, J.C., Silver, P.A.: Designing biological systems. Genes. Dev. 21(3), 242–254 (2007)

    Article  Google Scholar 

  11. Endy, D.: Foundations for engineering biology. Nature 438(7067), 449–453 (2005)

    Article  Google Scholar 

  12. Fontana, W., Buss, L.W.: “The arrival of the fittest”: Towards a theory of biological organization. Bull. Math. Biol. 56, 1–64 (1994)

    MATH  Google Scholar 

  13. Fukuda, K., Prodon, A.: Double description method revisited. In: Selected papers from the 8th Franco-Japanese and 4th Franco-Chinese Conference on Combinatorics and Computer Science, pp. 91–111. Springer-Verlag, London, UK (1996)

    Google Scholar 

  14. Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex objects and collections. In: M. van den Brand, R. Verma (eds.) Electr. Notes Theor. Comput. Sci., vol. 59, pp. 286–304. Elsevier Science Publishers (2001)

    Google Scholar 

  15. Hucka, M., Finney, A., Bornstein, B.J., Keating, S.M., Shapiro, B.E., Matthews, J., Kovitz, B.L., Schilstra, M.J., Funahashi, A., Doyle, J.C., Kitano, H.: Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project. Syst. Biol. (Stevenage) 1(1), 41–53 (2004)

    Article  Google Scholar 

  16. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Novère, N.L., Loew, L.M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J., Forum, S.B.M.L.: The Systems Biology Markup Language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  17. Kaleta, C.: Organization computation on the web. URL http://orgtheo. artificialchemistries.org/

  18. Kaleta, C., Centler, F., di Fenizio, P.S., Dittrich, P.: Phenotype prediction in regulated metabolic networks. BMC Syst. Biol. 2(1), 37 (2008)

    Article  Google Scholar 

  19. Kaleta, C., Richter, S., Dittrich, P.: Using chemical organization theory for model-checking (2009). Submitted

    Google Scholar 

  20. Kitano, H., Funahashi, A., Matsuoka, Y., Oda, K.: Using process diagrams for the graphical representation of biological networks. Nat. Biotechnol. 23(8), 961–966 (2005)

    Article  Google Scholar 

  21. Ma, W., Johnson, C., Brent, R.: Implementation of the Chemical Abstract Machine on a MIMD computer. Tech. rep., CS Lab, ANU, Australia (1996)

    Google Scholar 

  22. Matsumaru, N., Centler, F., di Fenizio, P.S., Dittrich, P.: Chemical organization theory applied to virus dynamics (Theorie chemischer organisationen angewendet auf infektionsmodelle). Inform. Technol. 48(3), 154–160 (2006)

    Google Scholar 

  23. Matsumaru, N., Centler, F., Speroni di Fenizio, P., Dittrich, P.: Chemical organization theory as a theoretical base for chemical computing. Int. J. Unconv. Comp. 3(4), 285– 309 (2007)

    Google Scholar 

  24. Matsumaru, N., di Fenizio, P.S., Centler, F., Dittrich, P.: On the evolution of chemical organizations. In: S. Artmann, P. Dittrich (eds.) Proc. 7th German Workshop on Artificial Life, pp. 135–146. IOS Press, Amsterdam, NL (2006)

    Google Scholar 

  25. Matsumaru, N., Lenser, T., Hinze, T., Dittrich, P.: Toward organization-oriented chemical programming: A case study with the maximal independent set problem. In: F. Dressler, I. Carreras (eds.) Advances in Biologically Inspired Information Systems, Studies in Computational Intelligence (SCI), vol. 69, pp. 147–163. Springer-Verlag, Berlin, Heidelberg, New York (2007)

    Chapter  Google Scholar 

  26. Novére, N.L., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioModels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(Database issue), D689–D691 (2006)

    Article  Google Scholar 

  27. Pfeiffer, T., S'anchez-Valdenebro, I., no, J.C.N., Montero, F., Schuster, S.: META-TOOL: For studying metabolic networks. Bioinformatics 15(3), 251–257 (1999)

    Article  Google Scholar 

  28. Păaun, G.: From cells to computers: computing with membranes (P systems). Biosys-tems 59(3), 139–158 (2001)

    Article  Google Scholar 

  29. Radhika, V., Proikas-Cezanne, T., Jayaraman, M., Onesime, D., Ha, J.H., Dhanasekaran, D.N.: Chemical sensing of DNT by engineered olfactory yeast strain. Nat. Chem. Biol. 3(6), 325–330 (2007)

    Article  Google Scholar 

  30. Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: Stochastic simulation of large-scale genetic regulatory networks. J. Bioinform. Comput. Biol. 3(2), 415–436 (2005)

    Article  Google Scholar 

  31. Sauro, H.M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., Kitano, H.: Next generation simulation tools: the systems biology workbench and biospice integration. OMICS 7(4), 355–372 (2003)

    Article  Google Scholar 

  32. SBML Community: Systems Biology Markup Language (SBML) website. URL http: //www.sbml.org/

  33. Schuster, S., Fell, D.A., Dandekar, T.: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18(3), 326–332 (2000)

    Article  Google Scholar 

  34. Varma, A., Palsson, B.: Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technology 12, 994–998 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kaleta, C. (2009). From Artificial Chemistries to Systems Biology. In: Komosinski, M., Adamatzky, A. (eds) Artificial Life Models in Software. Springer, London. https://doi.org/10.1007/978-1-84882-285-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-285-6_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-284-9

  • Online ISBN: 978-1-84882-285-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics