Skip to main content

Imaging Pulmonary Microvascular Flow

  • Chapter
Congenital Diseases in the Right Heart

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patel DJ, Schilder DP, Mallos AJ. Mechanical properties and dimensions of the major pulmonary arteries. J Appl Physiol. 1960;15:92–6.

    PubMed  CAS  Google Scholar 

  2. Rabinovitch M. Pulmonary hypertension: updating a mysterious disease. Cardiovasc Res. 1997;34:268–72.

    Article  PubMed  CAS  Google Scholar 

  3. Hoffman JI, Rudolph AM, Heymann MA. Pulmonary vascular disease with congenital heart lesions: pathologic features and causes. Circulation. 1981;64:873–7.

    PubMed  CAS  Google Scholar 

  4. Palevsky HI, Gurughagavatula I. Pulmonary hypertension in collagen vascular disease. Compr Ther. 1999;25:133–43.

    Article  PubMed  CAS  Google Scholar 

  5. Weitzenblum E, Loiseau A, Hirth C, et al. Course of pulmonary hemodynamics in patients with chronic obstructive pulmonary disease. Chest. 1979;75:656–62.

    Article  PubMed  CAS  Google Scholar 

  6. Bogren HG, Klipstein RH, Mohiaddin RH, et al. Pulmonary artery distensibility and blood flow patterns: a magnetic resonance study of normal subjects and of patients with pulmonary arterial hypertension. Am Heart J. 1989;118: 990–9.

    Article  PubMed  CAS  Google Scholar 

  7. Wagenvoort CA. Open lung biopsies in congenital heart disease for evaluation of pulmonary vascular disease. Predictive value with regard to corrective operability. Histopathology. 1985;9:417–36.

    Article  PubMed  CAS  Google Scholar 

  8. Fukuchi K, Hayashida K, Nakanishi N, et al. Quantitative analysis of lung perfusion in patients with primary pulmonary hypertension. J Nucl Med. 2002;43:757–61.

    PubMed  Google Scholar 

  9. Roman KS, Kellenberger CJ, Farooq S, et al. Differential pulmonary blood flow in patients with congenital heart disease: Magnetic resonance imaging versus lung perfusion scintigraphy. Pediatr Radiol. In Press.

    Google Scholar 

  10. Rubin LJ. Primary pulmonary hypertension. N Engl J Med. 1997;336:111–7.

    Article  PubMed  CAS  Google Scholar 

  11. Agata Y, Hiraishi S, Oguchi K, et al. Changes in pulmonary venous flow pattern during early neonatal life. Br Heart J. 1994;71:182–6.

    Article  PubMed  CAS  Google Scholar 

  12. West J, Wagner, PD. Ventilation-perfusion relationships. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  13. Kang IS, Redington AN, Benson LN, et al. Differential regurgitation in branch pulmonary arteries after repair of tetralogy of Fallot: a phase-contrast cine magnetic resonance study. Circulation. 2003;107:2938–43.

    Article  PubMed  Google Scholar 

  14. Kellenberger CJ, Macgowan CK, Roman KS, et al. Hemodynamic evaluation of the peripheral pulmonary circulation by cine phase-contrast magnetic resonance imaging. J Magn Reson Imaging. 2005;22:780–7.

    Article  PubMed  Google Scholar 

  15. Fishman AJ, Moser KM, Fedullo PF. Perfusion lung scans vs pulmonary angiography in evaluation of suspected primary pulmonary hypertension. Chest. 1983;84:679–83.

    Article  PubMed  CAS  Google Scholar 

  16. Hatabu H, Tadamura E, Levin DL, et al. Quantitative assessment of pulmonary perfusion with dynamic contrast-enhanced MRI. Magn Reson Med. 1999;42:1033–8.

    Article  PubMed  CAS  Google Scholar 

  17. Stewart GN. Researches on the circulation time in organs and on the influences which affect it. Parts I-III. J. Physiol. 1894;15:1–89.

    Google Scholar 

  18. Meir P ZK. On the theory of the indicatir-dilution method for measurement of blood flow and volume. J Appl Physiol. 1954;6:731–44.

    Google Scholar 

  19. Zierler K. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res. 1962;137:677–84.

    Google Scholar 

  20. Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology. 1980;137:679–86.

    PubMed  CAS  Google Scholar 

  21. Calamante F, Thomas DL, Pell GS, et al. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999;19:701–35.

    Article  PubMed  CAS  Google Scholar 

  22. Johnson K. Ventilation and perfusion scanning in children. Paediatr Respir Rev. 2000;1:347–53.

    Article  PubMed  CAS  Google Scholar 

  23. Hoffman EA, Chon D. Computed tomography studies of lung ventilation and perfusion. Proc Am Thorac Soc. 2005;2:492–8, 506.

    Article  PubMed  Google Scholar 

  24. Boll DT, Lewin JS, Young P, et al. Perfusion abnormalities in congenital and neoplastic pulmonary disease: comparison of MR perfusion and multislice CT imaging. Eur Radiol. 2005;15:1978–86.

    Article  PubMed  Google Scholar 

  25. Musch G, Venegas JG. Positron emission tomography imaging of regional pulmonary perfusion and ventilation. Proc Am Thorac Soc. 2005;2:522–7, 508–9.

    Article  PubMed  Google Scholar 

  26. Investigators TP. Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (PIOPED). JAMA. 1990;263:2753–59.

    Article  Google Scholar 

  27. Tonge KA, Wright CH, Mathew J, et al. Flow rate determination using computed tomography. Br J Radiol. 1980;53:946–9.

    Article  PubMed  CAS  Google Scholar 

  28. Macgowan CK, Al-Kwifi O, Varodayan F, et al. Optimization of 3D contrast-enhanced pulmonary magnetic resonance angiography in pediatric patients with congenital heart disease. Magn Reson Med. 2005;54:207–12.

    Article  PubMed  Google Scholar 

  29. Hatabu H GJ, Kim D et al. Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med. 1996a;36:503–508.

    Article  CAS  Google Scholar 

  30. Matsuoka S UK, Chima H et al. Effect of the rate of gadolinium injection on magnetic resonance pulmonary perfusion imaging. J Magn Reson Imaging. 2002;15:108–113.

    Article  PubMed  Google Scholar 

  31. Ostergaard L WR, Chesler DA et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, Part I. Mathematical approach and statistical analysis. Magn Reson Med. 1996;36:715–25.

    Article  PubMed  CAS  Google Scholar 

  32. Iwasawa T SK, Ogawa N et al. Prediction of postoperative pulmonary function using perfusion magnetic resonance imaging of the lung. J Magn Reson Imaging. 2002;15:685–92.

    Article  PubMed  Google Scholar 

  33. Nikolaou K SS, Nittka M et al. Magnetic resonance imaging in the diagnosis of pulmonary arterial hypertension: High resolution angiography and fast perfusion imaging using intelligent parallel acquistion techniques (IPAT) (abstract). Radiology. 2002;225:473.

    Google Scholar 

  34. Fink C BM, Puderbach M et al. partially parallel three-dimensional magnetic resonance imaging for the assessment of lund perfusion - initial results. Invest Radiol. 2003;38:482–88.

    Article  PubMed  Google Scholar 

  35. Goyen M, Laub G, Ladd ME, et al. Dynamic 3D MR angiography of the pulmonary arteries in under four seconds. J Magn Reson Imaging. 2001;13:372–7.

    Article  PubMed  CAS  Google Scholar 

  36. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603.

    Article  PubMed  CAS  Google Scholar 

  37. Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

    Article  PubMed  CAS  Google Scholar 

  38. Sodickson DK, McKenzie CA, Ohliger MA, et al. Recent advances in image reconstruction, coil sensitivity calibration, and coil array design for SMASH and generalized parallel MRI. Magma. 2002;13:158–63.

    Article  PubMed  Google Scholar 

  39. Madore B, Pelc NJ. SMASH and SENSE: experimental and numerical comparisons. Magn Reson Med. 2001;45:1103–11.

    Article  PubMed  CAS  Google Scholar 

  40. Ahlstrom KH, Johansson LO, Rodenburg JB, et al. Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology. 1999;211:865–9.

    PubMed  CAS  Google Scholar 

  41. Nolte-Ernsting CC, Krombach G, Staatz G, et al. [Virtual endoscopy of the upper urinary tract based on contrast-enhanced MR urography data sets]. Rofo. 1999;170:550–6.

    PubMed  CAS  Google Scholar 

  42. Zheng J, Carr J, Harris K, et al. Three-dimensional MR pulmonary perfusion imaging and angiography with an injection of a new blood pool contrast agent B-22956/1. J Magn Reson Imaging. 2001;14:425–32.

    Article  PubMed  CAS  Google Scholar 

  43. Viallon M, Berthezene Y, Decorps M, et al. Laser-polarized (3)He as a probe for dynamic regional measurements of lung perfusion and ventilation using magnetic resonance imaging. Magn Reson Med. 2000;44:1–4.

    Article  PubMed  CAS  Google Scholar 

  44. Callot V, Canet E, Brochot J, et al. MR perfusion imaging using encapsulated laser-polarized 3He. Magn Reson Med. 2001;46:535–40.

    Article  PubMed  CAS  Google Scholar 

  45. Detre JA, Leigh JS, Williams DS, et al. Perfusion imaging. Magn Reson Med. 1992;23:37–45.

    Article  PubMed  CAS  Google Scholar 

  46. Roberts DA, Gefter WB, Hirsch JA, et al. Pulmonary perfusion: respiratory-triggered three-dimensional MR imaging with arterial spin tagging–preliminary results in healthy volunteers. Radiology. 1999;212:890–5.

    PubMed  CAS  Google Scholar 

  47. Roberts DA, Rizi RR, Lipson DA, et al. Dynamic observation of pulmonary perfusion using continuous arterial spin-labeling in a pig model. J Magn Reson Imaging. 2001;14:175–80.

    Article  PubMed  CAS  Google Scholar 

  48. Edelman RR, Siewert B, Darby DG, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology. 1994;192:513–20.

    PubMed  CAS  Google Scholar 

  49. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89:5675–9.

    Article  PubMed  CAS  Google Scholar 

  50. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34:293–301.

    Article  PubMed  CAS  Google Scholar 

  51. Hatabu H, Wielopolski PA, Tadamura E. An attempt of pulmonary perfusion imaging utilizing ultrashort echo time turbo FLASH sequence with signal targeting and alternating radio-frequency (STAR). Eur J Radiol. 1999e;29:160–3.

    Article  CAS  Google Scholar 

  52. Hatabu H, Tadamura E, Prasad PV, et al. Noninvasive pulmonary perfusion imaging by STAR-HASTE sequence. Magn Reson Med. 2000;44:808–12.

    Article  PubMed  CAS  Google Scholar 

  53. Roman KS, Kellenberger CJ, Farooq S, et al. Comparative imaging of differential pulmonary blood flow in patients with congenital heart disease: magnetic resonance imaging versus lung perfusion scintigraphy. Pediatr Radiol. 2005;35:295–301.

    Article  PubMed  Google Scholar 

  54. Nikolaou K, Schoenberg SO, Attenberger U, et al. Pulmonary arterial hypertension: diagnosis with fast perfusion MR imaging and high-spatial-resolution MR angiography–preliminary experience. Radiology. 2005;236:694–703.

    Article  PubMed  Google Scholar 

  55. Ohno Y, Hatabu H, Murase K, et al. Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: Preliminary experience in 40 subjects. J Magn Reson Imaging. 2004;20:353–65.

    Article  PubMed  Google Scholar 

  56. Jones AT, Hansell DM, Evans TW. Quantifying pulmonary perfusion in primary pulmonary hypertension using electron-beam computed tomography. Eur Respir J. 2004;23:202–7.

    Article  PubMed  CAS  Google Scholar 

  57. Glenny RW, Robertson HT. Fractal modeling of pulmonary blood flow heterogeneity. J Appl Physiol. 1991;70:1024–30.

    PubMed  CAS  Google Scholar 

  58. Horn M, Hooper W, Brach B, et al. Postural changes in pulmonary blood flow in pulmonary hypertension: a noninvasive technique using ventilation-perfusion scans. Circulation. 1982;66:621–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Macgowan, C.K., Kassner, A. (2009). Imaging Pulmonary Microvascular Flow. In: Redington, A.N., Van Arsdell, G.S., Anderson, R.H. (eds) Congenital Diseases in the Right Heart. Springer, London. https://doi.org/10.1007/978-1-84800-378-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-378-1_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-377-4

  • Online ISBN: 978-1-84800-378-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics