Skip to main content

Plasticity of Finite Deformation and Anisotropic Materials, and Modeling of Fracture and Friction

  • Chapter
Modeling of Metal Forming and Machining Processes

Part of the book series: Engineering Materials and Processes ((EMP))

  • 3092 Accesses

Abstract

In Chapter 3, we developed the Eulerian formulation of metal forming problems. In deriving the constitutive equation of this formulation, it is assumed that the elastic and plastic parts of the rate of deformation tensor are additive. This assumption is usually true for small rotation. Further, the objective stress rate measure used in the constitutive equation, namely the Jaumann stress rate tensor, also remains objective only for small rotation. Therefore, we need to modify this constitutive equation for the case of finite deformation and rotation. In Sections 4.2 and 4.3 of this chapter, we first discuss the kinematics of finite deformation, and then the constitutive equation for the case of finite deformation and rotation. Since, in this case, the elastic and plastic parts of the rate of deformation tensor are not additive, the elastic and plastic parts of the constitutive equation are expressed separately. The elastic constitutive equation is expressed in terms of the stress and logarithmic strain tensors and the plastic constitutive equation in terms of the deviatoric stress and the plastic part of the rate of deformation tensors. Since no stress rates are involved, an objective stress rate measure is not needed in this constitutive equation. Next, we discuss the iterative solution procedure to be adopted while using this constitutive equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.12 References

  1. Malvern, L.E. (1969), Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Inc., Englewood Cliffs.

    Google Scholar 

  2. Jaunzemis, W. (1967), Continuum Mechanics, The Macmillan Company, New York.

    MATH  Google Scholar 

  3. Lee, E.H. (1981), Some comments on elastic-plastic analysis, International Journal of Solids & Structures, Vol. 17, pp. 859–872.

    Article  MATH  Google Scholar 

  4. Boyce, M.C., Weber, G.G. and Parks, D.M. (1989), On the kinematics of finite strain plasticity, Journal of Mechanics & Physics of Solids, Vol. 37, pp. 647–665.

    Article  MATH  Google Scholar 

  5. Segal, L.A. (1977), Mathematics Applied to Continuum Mechanics, Macmillan Publishing Co. Inc., New York.

    Google Scholar 

  6. Weber, G. and Anand, L. (1990), Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Computer Methods in Applied Mechanics and Engineering, Vol. 79, pp. 173–176.

    Article  MATH  Google Scholar 

  7. Crisfield, M.A. (1997), Non-Linear Finite Element Analysis of Solids and Structures, John Wiley and Sons, Chichester, Vol. 2.

    Google Scholar 

  8. Kobayashi, S., Oh, S.I. and Altan, T. (1989), Metal Forming and the Finite-Element Method, Oxford university Press, Oxford.

    Google Scholar 

  9. Nagtegaal, J.C. and DeJong, J.E. (1981), Some computational aspects of elasticplastic large strain analysis, International Journal of Numerical Methods for Engineering, Vol. 17, pp. 15–41.

    Article  MATH  Google Scholar 

  10. Prager, W. (1961), Introduction to Mechanics of Continua, Ginn and Co., Boston

    MATH  Google Scholar 

  11. Dienes, J.K. (1979), On the analysis of rotation and stress rate in deforming bodies, Acta Mechanica, Vol. 32, pp. 217–232.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lee, E.H., Mallet, R.L. and Wertheimer, T.B. (1983), Stress analysis of anisotropic hardening in finite-deformation plasticity, Transaction of ASME, Journal of Applied Mechanics, Vol. 50, pp. 554–560.

    MATH  Google Scholar 

  13. Dafalias, Y.F. (1983), A missing link in the macroscopic constitutive formulation of large plastic deformations: in Plasticity Today, ed. by Sawczuk, A. and Bianchi, G., pp. 135–151, International Symposium on Recent Trends and Results in Plasticity, Udine, Elsevier Applied Science Publishers, London.

    Google Scholar 

  14. Khan, A.S. and Huang, S. (1995), Continuum Theory of Plasticity, John Wiley and Sons Inc., New York.

    MATH  Google Scholar 

  15. Habraken, A.M. and Duchene, L. (2004), Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model, International Journal of Plasticity, Vol. 21, pp. 1525–1560.

    Article  Google Scholar 

  16. Raabe, D. and Roters, F. (2004), Using texture components in crystal plasticity finite element simulations, International Journal of Plasticity, Vol. 21, pp. 339–361.

    Article  Google Scholar 

  17. Barlat, F., Chung, K. and Richmond, O. (1993), Strain rate potential for metals and its application to minimum plastic work path calculations, International Journal of Plasticity, Vol. 9, pp. 51–63.

    Article  Google Scholar 

  18. Chung, K., Lee, S.Y., Barlat, F., Keum, Y.T. and Park, J.M. (1996), Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential, International Journal of Plasticity, Vol. 12, pp. 93–115.

    Article  MATH  Google Scholar 

  19. Hill, R. (1948), A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London, Vol. A 193, pp. 281–297

    Google Scholar 

  20. Hill, R. (1979), Theoretical plasticity of textured aggregates, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 85, pp. 179–191.

    MATH  MathSciNet  Google Scholar 

  21. Hosford, W.F. (1972), A generalized isotropic yield function, Transaction of ASME, Journal of Applied Mechanics, Vol. E39, pp. 607–609.

    Google Scholar 

  22. Logan, R.W. and Hosford, W.F. (1980), Upper-bound anisotropic yield locus calculations assuming <111>-pencil glide, International Journal of Mechanical Sciences, Vol. 22, pp. 419–430.

    Article  Google Scholar 

  23. Barlat, F. and Lian, J. (1989), Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions, International Journal of Plasticity, Vol. 5, pp. 51–66.

    Article  Google Scholar 

  24. Bishop, J.W.F. and Hill, R. (1951), A theory of the plastic distortion of a polycrystalline aggregate under combined stresses, Philosophical Magazine, Vol. 42, pp. 414–427 and A theoretical derivation of the plastic properties of a polycrystalline face-centered metal, Philosophical Magazine, Vol. 42, pp. 1298–1307.

    MATH  MathSciNet  Google Scholar 

  25. Barlat, F., Lege, D.J. and Brem, J.C. (1991), A six-component yield function for anisotropic materials, International Journal of Plasticity, Vol. 7, pp. 693–712.

    Article  Google Scholar 

  26. Karafillis, A.P. and Boyce, M.C. (1993), A general anisotropic yield criterion using bounds and a transformation weighting tensor, Journal of Mechanics & Physics of Solids, Vol. 41, pp. 1859–1886.

    Article  MATH  Google Scholar 

  27. Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J, Pourboghrat, F., Choi, S.H. and Chu, E. (2003), Plane stress yield function for aluminum alloy sheets, International Journal of Plasticity, Vol. 19, pp. 1297–1319.

    Article  MATH  Google Scholar 

  28. Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C. and Dick, R.E. (2005), Linear transformation-based anisotropic yield functions, International Journal of Plasticity, Vol. 21, pp. 1009–1039.

    Article  MATH  Google Scholar 

  29. Bron, F. and Besson, J. (2004), A yield function for anisotropic materials: Application to aluminum alloys, International Journal of Plasticity, Vol. 21, pp. 937–963.

    Article  Google Scholar 

  30. Woodthorpe, J. and Pearce, R. (1970), The anomalous behavior of aluminum sheet under balanced biaxial tension, International Journal of Mechanical Sciences, Vol. 12, pp. 341–347.

    Article  Google Scholar 

  31. Barlat, F. and Richmond, O. (1987), Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured FCC polycrystalline sheets, Material Science and Engineering, Vol. 95, pp. 15–29.

    Article  Google Scholar 

  32. Yoon, J.W., Barlat, F., Dick, R.E. and Karabin, M.E. (2006), Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function, International Journal of Plasticity, Vol. 22, pp. 174–193.

    Article  MATH  Google Scholar 

  33. Hu, W. (2005), An orthotropic yield criterion in a 3-D general stress state, International Journal of Plasticity, Vol. 21, pp. 1771–1796.

    Article  MATH  Google Scholar 

  34. Dixit, U.S. and Dixit, P.M. (1997), Finite element analysis of flat rolling with inclusion of anisotropy, International Journal of Mechanical Sciences, Vol. 39, pp. 1237–1255.

    Article  MATH  Google Scholar 

  35. Prager, W. (1955), The theory of plasticity: A survey of recent achievements, Proceedings for the Institution of Mechanical Engineers, Vol. 169, pp. 41–57.

    Article  MathSciNet  Google Scholar 

  36. Ziegler, H. (1959), A modification of Prager’s hardening rule, Quarterly of Appied Mathematics, Vol. 17, pp. 55–65.

    MathSciNet  MATH  Google Scholar 

  37. Shield, R. and Ziegler, H. (1958), On Prager’s hardening rule, Zeitschrift für Angewandte Mathematik und Physik, Vol. 9a, pp. 260–276.

    MathSciNet  Google Scholar 

  38. Chakrabarty, J. (1987), Theory of Plasticity, McGraw-Hill Book Co., New York.

    Google Scholar 

  39. Rees, D.W.A. (2006), Basic Engineering Plasticity, Elsevier Ltd, Oxford.

    Google Scholar 

  40. Berg, C.A. (1970), Plastic dilation and void interaction, Inelastic Behavior of Solids, Ed. By Kanninen, Adler, Rosenfield and Jaffe, pp. 171–210.

    Google Scholar 

  41. Gurson, A.L. (1977), Continuum theory of ductile rapture by void nucleation and growth, Part I: Yield criteria and flow rules for porous ductile media, Transaction of ASME, Journal of Engineering Materials and Technology, Vol. 99, pp. 2–15.

    Google Scholar 

  42. Goods S.H. and Brown L.M. (1979), The nucleation of cavities by plastic deformation, Acta Metallurgica, Vol 27, pp. 1–15.

    Article  Google Scholar 

  43. Rice, J.R. and Tracy D.M. (1969), On the ductile enlargement of voids in triaxial stress field, Journal of Mechanics & Physics of Solids, Vol. 17, pp. 201–217.

    Article  Google Scholar 

  44. Thomason, P.F. (1990), Ductile Fracture, Pergamon Press.

    Google Scholar 

  45. Lemaitre, J. (1985), A continuous damage mechanics model for ductile fracture, Transaction of ASME, Journal of Engineering Materials and Technology, Vol. 107, pp. 83–89.

    Google Scholar 

  46. Rousselier, G. (1987), Ductile fracture model and their potential in local approach of fracture, Nuclear Engineering and Design, Vol. 105. pp. 97–111.

    Article  Google Scholar 

  47. Tvergaard, V. (1981), Influence of voids on shear band instabilities under plane strain condition, International Journal of Fracture, Vol. 17, pp. 389–406.

    Article  Google Scholar 

  48. Rudnicki, J.W. and Rice, J.R. (1975), Conditions for the localization of deformation in pressure sensitive dilatant materials. Journal of Mechanics & Physics of Solids, Vol. 23, pp. 371–394.

    Article  Google Scholar 

  49. Yamamoto, H. (1978), Conditions for shear localization in the ductile fracture of void containing materials, International Journal of Fracture, Vol 14, pp. 347–365.

    Article  Google Scholar 

  50. Alberti, N., Barcellona, A. Cannizzaro, L. and Micari, F. (1994), Prediction of ductile fracture in metal forming processes: an approach based on the damage mechanics, Annals of CIRP, Vol. 43, pp. 207–210.

    Google Scholar 

  51. Gurland, J. (1972), Observations on the fracture of cementite particles in spherodised 1.05 % C steel deformed at room temperature, Acta Metallurgica, Vol. 20, pp. 735–741.

    Article  Google Scholar 

  52. McClintock, F.A. (1968), A criterion for ductile fracture by the growth of holes, Transaction of ASME, Journal of Applied Mechanics, Vol. 90, pp. 363–371.

    Google Scholar 

  53. Clift, S.E., Hartley, P., Sturgess, C.E.N. and Rowe, G.W. (1990), Fracture prediction in plastic deformation processes, International Journal of Mechanical Sciences, Vol. 32, pp. 1–17.

    Article  Google Scholar 

  54. Oh, S.I., Chen, C.C. and Kobayashi, S. (1979), Ductile fracture in axisymmetric extrusion and drawing, Transaction of ASME, Journal of Engineering for Industry, Vol. 101, pp. 36–44.

    Google Scholar 

  55. Lemaitre, J. and Chaboche, J.L. (1990), Mechanics of Solid Materials, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  56. Le Roy, G., Embury, J.D., Edward, G. and Ashby, M.F. (1981), A model of ductile fracture based on the nucleation and growth of voids, Acta Metallurgica, Vol. 29, pp. 1509–1522.

    Article  Google Scholar 

  57. Dhar, S., Sethuraman, R. and Dixit, P.M. (1996), A continuum damage mechanics model for void growth and micro-crack initiation, Engineering Fracture Mechanics, Vol. 53, pp. 917–928.

    Article  Google Scholar 

  58. Bridgeman, P.W. (1964), Studies in Large Plastic Flow and Fracture, Harvard University Press, Harward.

    Google Scholar 

  59. Tai, W.H. and Yang, B.X. (1986), A new micro-void damage model for ductile fracture, Engineering Fracture Mechanics, Vol. 25, pp. 377–384.

    Article  Google Scholar 

  60. Jun, W.T. (1992), Unified CDM model and local criteria for ductile fracture-I, Engineering Fracture Mechanics, Vol. 42, pp. 177–183.

    Article  Google Scholar 

  61. Zheng, M., Luo, Z.J. and Zheng, X. (1992), A new damage model for ductile material, Engineering Fracture Mechanics, Vol. 41, pp. 103–110.

    Article  Google Scholar 

  62. Freudenthal, A.M. (1950), The Inelastic Behavior of Solids, John Wiley, New York.

    Google Scholar 

  63. Cockcroft, M.G. and Latham, D.J. (1968), Ductility and workability of metals, Journal of the Institute of Metals, Vol. 96, pp. 33–39.

    Google Scholar 

  64. Oyane, M. (1972), Criteria of ductile strain, Bulletin of JSME, Vol. 15, pp. 1507–1513.

    Google Scholar 

  65. Norris, D.M., Reaugh, J.E., Moran, B. and Quinones, D.F. (1978), A plastic strain mean stress criterion for ductile fracture, Transaction of ASME, Journal of Engineering Materials and Technology, Vol. 100, pp. 279–286.

    Google Scholar 

  66. Osakada, K. and Mori, K. (1978), Prediction of ductile fracture in cold forging, Annals of CIRP, Vol. 27, pp. 135–139.

    Google Scholar 

  67. Reddy, N.V., Dixit, P.M. and Lal, G.K. (1996), Central bursting and optimal die profile for axisymmetric extrusion, Transaction of ASME, Journal of Manufacturing Science and Engineering, Vol. 118, pp. 579–584.

    Article  Google Scholar 

  68. Reddy, N.V., Dixit, P.M. and Lal, G.K. (2000), Ductile fracture criteria and its prediction in axisymmetric drawing, International Journal of Machine Tools & Manufacture, Vol. 40, pp. 495–111.

    Article  Google Scholar 

  69. Rajak, S.A. and Reddy, N.V. (2005), Prediction of internal defects in plane strain rolling, Journal of Materials Processing Technology, Vol. 159, pp. 409–417.

    Article  Google Scholar 

  70. Gupta, S., Reddy, N.V. and Dixit, P.M. (2003), Ductile fracture prediction in axisymmetric upsetting using continuum damage mechanics, Journal of Materials Processing Technology, Vol. 143, pp. 256–265.

    Article  Google Scholar 

  71. Avitzur, B. (1968), Metal Forming: Processes and Analysis, McGraw-Hill Book Co., New York.

    Google Scholar 

  72. Wanheim, T. and Bay, N. (1978), A model for friction in metal forming processes, Annals of CIRP, Vol. 27, pp. 189–194.

    Google Scholar 

  73. Wanheim, W. (1973), Friction at high normal pressure, Wear, Vol. 25, pp. 225–244.

    Article  Google Scholar 

  74. Wanheim, W., Bay, N. and Petersen, A.S. (1974), A theoretically determined model for friction in metal working processes, Wear, Vol. 28, pp. 251–258.

    Article  Google Scholar 

  75. Christensen, P., Everfelt, K. and Bay, N. (1986), Pressure distribution in plate rolling, Annals of CIRP, Vol. 35, pp. 141–146.

    Article  Google Scholar 

  76. Richelsen, A.B. (1991), Viscoplastic analysis of plane strain rolling using different friction models, International Journal of Mechanical Sciences, Vol. 33, pp. 761–774.

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2008). Plasticity of Finite Deformation and Anisotropic Materials, and Modeling of Fracture and Friction. In: Modeling of Metal Forming and Machining Processes. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84800-189-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84800-189-3_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84800-188-6

  • Online ISBN: 978-1-84800-189-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics