Skip to main content

On Plasticity, Complexity, and Sapient Systems

  • Chapter
  • 356 Accesses

Abstract

Sapient agents have been characterized as a subclass of intelligent agents capable of “insight” and “sound judgment.” Although several engineering issues have been established to characterize sapient agents, biological referents also seem necessary to understand the cognitive functionality of such systems. Small-world and scale-free networks, the so-called complex networks, provide a new mathematical approach to anatomical and functional connectivity related to cognitive processes. We argue that complex cognitive functions require such complex connectivity, which results from epigenetic development through experiences. Particularly we claim that agents will show complex functionality only if a complex arrangement of their knowledge is achieved. In this chapter, we propose a model in which situated agents evolve knowledge networks holding both small-world and scale-free properties. Experimental results using pragmatic games support explanations about the conditions required to obtain such networks relating degree distribution and sensing; clustering coefficient and biological motivations; goals; acquired knowledge; and attentional focus. This constitutes a relevant advance in the understanding of how low-level connectivity emerges in artificial agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, R., Jeong, H., and Barabási, A-L. (1999). The diameter of the World Wide Web, Nature, 401, 130–131.

    Article  Google Scholar 

  • Albert, R., and Barabási, A-L. (2002). Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47.

    Article  MathSciNet  Google Scholar 

  • Barabási, A-L., and Albert, R. (1999). Emergence of scaling in random networks, Science, 286, 509–512.

    Article  MathSciNet  Google Scholar 

  • Barabási, A-L. (2002). Linked: The New Science of Networks, Perseus.

    Google Scholar 

  • Barabási, A.-L., Jeong, H., Ravasz, R., Néda, Z., Vicsek, T., and Schubert, A. (2002). On the topology of the scientific collaboration networks, Physica A, 311, 590–614.

    Article  MATH  MathSciNet  Google Scholar 

  • Barabási, A-L., and Bonabeau, E. (2003). Scale-Free Networks, Scientific American, 288, 60–69.

    Article  Google Scholar 

  • Batali, J., and Grundy, W.N. (1996) Modeling the evolution of motivation, Evolutionary Computation 4(3), 235–270.

    Google Scholar 

  • Brooks, R.A. (1990). Elephants don’t play chess, Robotics and Autonomous Systems 6(28), 3–15.

    Article  Google Scholar 

  • Brooks, R.A., Breazeal, C., Marjanovic, M., Scassellati, B., and Williamson, M. (1998). The cog project: Building a humanoid robot, Computation for Metaphors, Analogy and Agents, C. Nehaniv (ed.), Berlin, LNAI 1562, 52–87

    Google Scholar 

  • Chialvo, D.R. (2004). Critical brain networks, Physica A, 340(4), 756–765, September.

    Article  Google Scholar 

  • Cohen, P. (2004). Small world networks key to memory, New Scientist, 182, p. 12.

    Google Scholar 

  • Collier, J. (2000). Autonomy and process closure as the basis for functionality, Annals of the New York Academy of Sciences, J.L.R. Chandler and G. Van der Vijver (eds.), 901, 280–290, New York.

    Google Scholar 

  • Drescher, D.L. (1991). Made-Up Minds: A Constructivist Approach to Artificial Intelligence, MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Eguiluz V.M., et al. (2005). Scale-free brain functional networks, Physical Review. Letters, 92, p. 018102.

    Article  Google Scholar 

  • Erdös, P., and Rényi, A. (1960). On the evolution of random graphs, Mathematics Institute Publication Hungarian Academy of Science, 5, 17–60.

    MATH  Google Scholar 

  • Ferrer-i-Cancho R., and Sole, R.V., (2001) The small world of human language, Proceedings of the Royal Society of London, Series B, Biological Sciences, 268(1482), 2261–2265.

    Google Scholar 

  • Foner, L. and Maes, P. (1994). Paying attention to what’s important: Using Focus of attention to improve unsupervised learning, The Third International Conference on the Simulation of Adaptive Behavior (SAB94), pp. 256–265.

    Google Scholar 

  • Franklin, S., and Graesser, A. (1997). Is it an agent, or just a program?, Intelligent Agents III, LNAI 1193, 21–36, Springer-Verlag.

    Article  Google Scholar 

  • Gazzaniga, M.S., et al.(2002). Cognitive Neuroscience: The Biology of the Mind, W.W. Norton, New York London.

    Google Scholar 

  • Jeong H., et al. (2000). The large-scale organization of metabolic networks, Nature, 407, 651–654.

    Article  Google Scholar 

  • Lederberg, J. (2001). The meaning of epigenetics, The Scientist 15(18), 6.

    Google Scholar 

  • Levenson, J.M., and Sweatt, D. (2005). Epigenetic mechanisms in memory formation, Nature 6, 109–119.

    Google Scholar 

  • McIntyre, A., Kaplan, F. and Steels, L. (2002). Crucial factors in the origins of word-meaning. In: A. Wray, (ed.). The Transition to Language, Oxford, UK, Oxford University Press. pp. 252–271.

    Google Scholar 

  • Milo, R., et al. (2002). Network motifs: Simple building blocks of complex networks, Science 298, 824–827.

    Article  Google Scholar 

  • Milo, R., et al. (2004). Superfamilies of evolved and designed networks, Science 303, 1538–1542.

    Article  Google Scholar 

  • Montague, P.R., and Dayan, P. (1998). Neurobiological modeling: Squeezing top down to meet bottom up, A Companion to Cognitive Science. W. Bechtel and G. Graham (eds.), Basil Blackwell, Oxford, UK pp. 526–542.

    Google Scholar 

  • Mora-Basáñez, C.R. de la Gersherson, C., and García-Vega, V.A. (2004). Representation development and behavior modifiers, Advances in Artificial Intelligence: Iberamia 2004, Lecture Notes in Artificial Intelligence, 3315, 504–513, Berlin.

    Google Scholar 

  • Newman, M.E.J. (2003). The structure and function of complex networks, SIAM Review, 45(2), 167–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Prince, C.G. (2002). Introduction: The Second International Workshop on Epigenetic Robotics, Lund University Cognitive Studies 94, Lund, Sweden.

    Google Scholar 

  • Russell, S.J. , and Norvig, P. (1995). Artificial Intelligence: A Modern Approach, Prentice Hall, Enstlwood Clifts, NJ.

    MATH  Google Scholar 

  • Russell, S.J., and Subramanian, D. (1995). Provably bounded-optimal agents, Journal of Artificial Intelligence Research, 2, 575–609, May.

    MATH  Google Scholar 

  • Scheutz, M., (2001) The evolution of simple affective states in multi-agent environments, Proceedings of AAAI Fall Symposium 01, AAAI Press, USA.

    Google Scholar 

  • Sheutz, M., and Sloman, A. (2001). Affect and agent control: Experiments with simple affective states, Proceedings of IAT-01, pages 200–209, World Scientific.

    Google Scholar 

  • Skolicki, Z., and Arciszewski, T. (2003). Sapient agents—Seven approaches, Proceedings of International Conference Integration of Knowledge Intensive Multi-Agent Systems: KIMAS’03: Modeling, Exploration, and Engineering, Boston.

    Google Scholar 

  • Smithers, T. (1992). Taking eliminative materialism seriously: A methodology for autonomous systems research, toward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life, F.J. Varela and P. Bourgine (eds.), MIT Press / Bradford Book, pp. 31–40.

    Google Scholar 

  • Sole, R.V., et al. (2006). Language networks: Their structure, function and evolution, Santa Fe Institute Working Paper 05-12-042, Santa Fe, CA.

    Google Scholar 

  • Sporns, O., and Chialvo, D.R. (2004). Organization, development and function of complex rain networks, Trends in Cognitive Sciences, 8, 418–425.

    Article  Google Scholar 

  • Steels, L., and Brooks, R. A. (1995). The Artificial Life route to Artificial Intelligence: Building Situated embodied agents, Lawrence Erlbaum Ass.

    Google Scholar 

  • Steels, L. (1996a) Emergent behavior lexicons, From Animals To Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, SAB’96. Complex Adaptive Systems, pp. 562–567, MIT Press, Cambridge, MA.

    Google Scholar 

  • Steels, L. (1996b). Self-organizing vocabularies, Proceedings of Alife V, C. Langton and T. Shimohara (eds), pages 179–184, Nara Japan.

    Google Scholar 

  • Steels, L. (1997). Synthesising the origins of language and meaning using co-evolution, self-organisation and level formation, Approaches to the Evolution of Language: Social and Cognitive Bases, J. Hurford, C. Knight, and M. Studdert-Kennedy (eds.), Edinburgh University Press, UK.

    Google Scholar 

  • Stojanov, G. (2001). Petitagé: A case study in developmental robotics, Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Lund University Cognitive Studies 85, Lund, Sweden.

    Google Scholar 

  • Watts, D., and Strogatz, S. (1998). Collective dynamics of “small-world” networks, Nature, 393, 440–442.

    Article  Google Scholar 

  • Watts, D. (1999). Small-worlds. The Dynamics of Networks between Order and Randomness, Princeton Studies in Complexity, Princeton University Press.

    Google Scholar 

  • Wooldridge, M., and Jennings, N.R. (1995). Intelligent agents: Theory and practice, The Knowledge Engineering Review, 10(2), 115–152.

    Article  Google Scholar 

  • Ziemke, T. (2001). Are robots embodied?, Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Lund University Cognitive Studies 85 Lund, Sweden.

    Google Scholar 

  • Zlatev, J., and Balkenius, C. (2001). Introduction: Why ’epigenetic robotics?,’ Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, Lund University Cognitive Studies, 85 pp 1–4 Lund, Sweden.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Mora-Basáñez, C.R.d., Guerra-Hernández, A., García-Vega, V.A., Steels, L. (2008). On Plasticity, Complexity, and Sapient Systems. In: Mayorga, R.V., Perlovsky, L.I. (eds) Toward Artificial Sapience. Springer, London. https://doi.org/10.1007/978-1-84628-999-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-999-6_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-998-9

  • Online ISBN: 978-1-84628-999-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics