Skip to main content

Immune System Alterations in Acute Heart Failure

  • Chapter
Acute Heart Failure

Abstract

Acute heart failure has emerged as a major public health problem, with over 1 million hospitalizations annually, but debate continues concerning the pathophysiology of this syndrome. Whether there are unique and important mechanisms that mediate decompensation distinct from those operative in chronic heart failure or whether mechanisms in common to both play a more prominent role in acute heart failure remains to be determined. Maladaptive regulatory responses have been recognized as critical in the development and progression of acute and chronic heart failure, especially upregulation of a number of key neurohormonal systems. Relevant to this review, not only has activation of many mediators of the inflammatory response cascade now been demonstrated in patients with chronic heart failure, but also recent studies indicate abnormal activation in acute heart failure. The possibility that inflammatory activation could play a unique role in the pathophysiology of acute heart failure continues to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frangogiannis NG. Targeting the inflammatory response in healing myocardial infarcts. Current Medicinal Chemistry, 2006;13:1877–93.

    Article  CAS  PubMed  Google Scholar 

  2. Aukrust P, Gullestad L, Ueland T, Damås JK, Yndestad A. Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann Med 2005;37:74–85.

    Article  CAS  PubMed  Google Scholar 

  3. Mann DL. Activation of inflammatory mediators in heart failure. Heart Failure 2004;11:159–80.

    Google Scholar 

  4. Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;223:236–41.

    Article  Google Scholar 

  5. Knuefermann P, Vallejo J, Mann DL. The role of innate immune responses in the heart in health and disease. Trends Cardiovasc Med 2004;14:1–7.

    Article  PubMed  Google Scholar 

  6. Mann DL. Targeted anticytokine therapy and the failing heart. Am J Cardiol 2005;95(S):9C–16C.

    Article  CAS  PubMed  Google Scholar 

  7. Rafiee P, Shi Y, Pritchard Jr KA, et al. Cellular redistribution of the inducible Hsp70 protein in the human and rabbit heart in response to the stress of chronic hypoxia: role of protein kinases. J Biol Chem 2003;278:43636–44.

    Article  CAS  PubMed  Google Scholar 

  8. Torre-Amione G. Immune activation in chronic heart failure. Am J Cardiol 2005;95(S):3C–8C.

    Article  CAS  PubMed  Google Scholar 

  9. Pomerantz BJ, Reznikov LL, Harken AH, et al. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1β. Proc Natl Acad Sci 2001;98:2871–6.

    Article  CAS  PubMed  Google Scholar 

  10. Torre-Amione G, Kapadia S, Lee J, et al. Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 1995;92:1487–93.

    CAS  PubMed  Google Scholar 

  11. Nakano M, Knowlton AA, Dibbs Z, et al. Tumor necrosis factor-α confers resistance to injury induced by hypoxic injury in the adult mammalian cardiac myocyte. Circulation 1998;97:1392–1400.

    CAS  PubMed  Google Scholar 

  12. Brasier AR, Jamaluddin M, Han Y, Patterson C, Runge MS. Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Mol Cell Biochem 2000;212(1–2):155–69.

    Article  CAS  PubMed  Google Scholar 

  13. Frolkis I, Gurevitch J, Yuhas Y, et al. Interaction between paracrine tumor necrosis factor-alpha and paracrine angiotensin II during myocardial ischemia. J Am Coll Cardiol 2001;37(1):316–22.

    Article  CAS  PubMed  Google Scholar 

  14. Kalra D, Baumgarten G, Dibbs Z, Seta Y, Sivasubramanian N, Mann DL. Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway. Circulation 2000;102(11):1302–7.

    CAS  PubMed  Google Scholar 

  15. Wei GC, Sirois MG, Qu R, Liu P, Rouleau JL. Subacute and chronic effects of quinapril on cardiac cytokine expression, remodeling, and function after myocardial infarction in the rat. J Cardiovasc Pharmacol 2002;39(6):842–50.

    Article  CAS  PubMed  Google Scholar 

  16. Gullestad L, Aukrust P, Ueland T, et al. Effect of high-versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol 1999;34(7):2061–7.

    Article  CAS  PubMed  Google Scholar 

  17. Gurlek A, Kilickap M, Dincer I, Dandachi R, Tutkak H, Oral D. Effect of losartan on circulating TNFalpha levels and left ventricular systolic performance in patients with heart failure. J Cardiovasc Risk 2001;8(5):279–82.

    Article  CAS  PubMed  Google Scholar 

  18. Gurantz D, Cowling RT, Villarreal FJ, Greenberg BH. Tumor necrosis factor-alpha upregulates angiotensin II type 1 receptors on cardiac fibroblasts. Circ Res 1999;85(3):272–9.

    CAS  PubMed  Google Scholar 

  19. Peng J, Gurantz D, Tran V, Cowling RT, Greenberg BH. Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ Res 2002;91(12):1119–26.

    Article  CAS  PubMed  Google Scholar 

  20. Flesch M, Hoper A, Dell’Italia L, et al. Activation and functional significance of the renin-angiotensin system in mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 2003;108(5):598–604.

    Article  CAS  PubMed  Google Scholar 

  21. Sekiguchi K, Li X, Coker M, et al. Cross-regulation between the renin-angiotensin system and inflammatory mediators in cardiac hypertrophy and failure. Cardiovasc Res 2004;63(3):433–42.

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura A, Johns EJ, Imaizumi A, Yanagawa Y, Kohsaka T. Effect of beta(2)-adrenoceptor activation and angiotensin II on tumour necrosis factor and interleukin 6 gene transcription in the rat renal resident macrophage cells. Cytokine 1999;11(10):759–65.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshimura T, Kurita C, Nagao T, et al. Inhibition of tumor necrosis factor-alpha and interleukin-1-beta production by beta-adrenoceptor agonists from lipopolysaccharide-stimulated human peripheral blood mononuclear cells. Pharmacology 1997;54(3):144–52.

    Article  CAS  PubMed  Google Scholar 

  24. Hasko G, Elenkov IJ, Kvetan V, Vizi ES. Differential effect of selective block of alpha 2-adrenoreceptors on plasma levels of tumour necrosis factor-alpha, interleukin-6 and corticosterone induced by bacterial lipopolysaccharide in mice. J Endocrinol 1995;144(3):457–62.

    Article  CAS  PubMed  Google Scholar 

  25. Szabo C, Hasko G, Zingarelli B, et al. Isoproterenol regulates tumour necrosis factor, interleukin-10, interleukin-6 and nitric oxide production and protects against the development of vascular hyporeactivity in endotoxaemia. Immunology 1997;90(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  26. Abraham E, Kaneko DJ, Shenkar R. Effects of endogenous and exogenous catecholamines on LPS-induced neutrophil trafficking and activation. Am J Physiol 1999;276(1 pt 1):L1–8.

    CAS  PubMed  Google Scholar 

  27. Le Tulzo Y, Shenkar R, Kaneko D, et al. Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catecholamines in nuclear factor-kappaB regulation and cytokine expression. J Clin Invest 1997;99(7):1516–24.

    Article  PubMed  Google Scholar 

  28. Guirao X, Kumar A, Katz J, et al. Catecholamines increase monocyte TNF receptors and inhibit TNF through beta 2-adrenoreceptor activation. Am J Physiol 1997;273(6 pt 1):E1203–8.

    CAS  PubMed  Google Scholar 

  29. Severn A, Rapson NT, Hunter CA, Liew FY. Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists. J Immunol 1992;148(11):3441–5.

    CAS  PubMed  Google Scholar 

  30. Spengler RN, Allen RM, Remick DG, Strieter RM, Kunkel SL. Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol 1990;145(5):1430–4.

    CAS  PubMed  Google Scholar 

  31. Bloksma N, Hofhuis F, Benaissa-Trouw B, Willers J. Endotoxin-induced release of tumour necrosis factor and interferon in vivo is inhibited by prior adrenoceptor blockade. Cancer Immunol Immunother 1982;14(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  32. Ng T, Vrana A, Sears T. Sympathetic regulation of monocyte TNF-alpha/IL-10 balance is impaired in severe heart failure. J Card Fail 2002;8(4 suppl):s3.

    Google Scholar 

  33. Petretta M, Condorelli GL, Spinelli L, et al. Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure. Am Heart J 2000;140:E28.

    Article  CAS  PubMed  Google Scholar 

  34. Maeda K, Tsutamoto T, Wada A, et al. High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol 2000;36:1587–93.

    Article  CAS  PubMed  Google Scholar 

  35. Peschel T, Schönauer M, Thiele H, Anker S, Schuler G, Niebauer J. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Failure 2003;5:609–14.

    Article  CAS  Google Scholar 

  36. Milo O, Cotter G, Kaluski E, et al. Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus nonischemic causes. Am J Cardiol 2003;92:222–6.

    Article  CAS  PubMed  Google Scholar 

  37. Sato Y, Takatsu Y, Kataoka K, et al. Serial circulating concentrations of C-reactive protein, interleukin (IL)-4, and IL-6 in patients with acute left heart decompensation. Clin Cardiol 1999;22(12):811–3.

    Article  CAS  PubMed  Google Scholar 

  38. Mueller C, Laule-Kilian K, Christ A, Brunner-La Rocca HP, Perruchoud AP. Inflammation and long-term mortality in acute congestive heart failure. Am Heart J 2006;151(4):845–50.

    Article  PubMed  Google Scholar 

  39. Alonso-Martinez JL, Llorente-Diez B, Echegaray-Agara M, Olaz-Preciado F, Urbieta-Echezarreta M, Gonzalez-Arencibia C. C-reactive protein as a predictor of improvement and readmission in heart failure. Eur J Heart Fail 2002;4(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  40. Yin WH, Chen JW, Jen HL, et al. Independent prognostic value of elevated high-sensitivity C-reactive protein in chronic heart failure. Am Heart J 2004;147(5):931–8.

    Article  CAS  PubMed  Google Scholar 

  41. Anand IS, Latini R, Florea VG, et al. C-reactive protein in heart failure: prognostic value and the effect of valsartan. Circulation 2005;112(10):1428–34.

    Article  CAS  PubMed  Google Scholar 

  42. Berton G, Cordiano R, Palmieri R, Pianca S, Pagliara V, Palatini P. C-reactive protein in acute myocardial infarction: association with heart failure. Am Heart J 2003;145(6):1094–101.

    Article  CAS  PubMed  Google Scholar 

  43. Kim BS, Jeon DS, Shin MJ, et al. Persistent elevation of C-reactive protein may predict cardiac hypertrophy and dysfunction in patients maintained on hemodialysis. Am J Nephrol 2005;25(3):189–95.

    Article  PubMed  CAS  Google Scholar 

  44. Campbell DJ, Woodward M, Chalmers JP, et al. Prediction of heart failure by amino terminal-pro-B-type natriuretic peptide and C-reactive protein in subjects with cerebrovascular disease. Hypertension 2005;45(1):69–74.

    CAS  PubMed  Google Scholar 

  45. Shah SJ, Marcus GM, Gerber IL, et al. Highsensitivity C-reactive protein and parameters of left ventricular dysfunction. J Card Fail 2006;12(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  46. Anzai T, Yoshikawa T, Takahashi T, et al. Early use of beta-blockers is associated with attenuation of serum C-reactive protein elevation and favorable short-term prognosis after acute myocardial infarction. Cardiology 2003;99(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  47. Joynt KE, Gattis WA, Hasselblad V, et al. Effect of angiotensin-converting enzyme inhibitors, beta blockers, statins, and aspirin on C-reactive protein levels in outpatients with heart failure. Am J Cardiol 2004;93(6):783–5.

    Article  CAS  PubMed  Google Scholar 

  48. Felker GM, Cotter G. Unraveling the pathophysiology of acute heart failure: An inflammatory proposal. Am Heart J 2006;151:765–7.

    Article  PubMed  Google Scholar 

  49. Pagni FD, Baker LS, His C, et al. Left ventricular systolic and diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs. J Clin Invest 1992;90:389–98.

    Article  Google Scholar 

  50. Janssen SPM, Gayan-Ramirez G, Van Den Bergh A, et al. Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. Circulation 2005;111:996–1005.

    Article  CAS  PubMed  Google Scholar 

  51. Vlachopoulos C, Dima I, Aznaouridis K, et al. Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation 2005;112:2193–200.

    Article  PubMed  Google Scholar 

  52. Malinski T. Understanding nitric oxide physiology in the heart: a nanomedical approach. Am J Cardiol 2005;96(7B):13i–24i.

    Article  CAS  PubMed  Google Scholar 

  53. Ferrari R, Guardigli G, Mele D, Percoco GF, Ceconi C, Curello S. Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 2004;10(14):1699–711.

    Article  CAS  PubMed  Google Scholar 

  54. Mihm MJ, Coyle CM, Schanbacher BL, Weinstein DM, Bauer JA. Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovasc Res 2001;49(4):798–807.

    Article  CAS  PubMed  Google Scholar 

  55. Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev 2002;54(4):619–34.

    Article  CAS  PubMed  Google Scholar 

  56. Heymes C, Bendall JK, Ratajczak P, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 2003;41(12):2164–71.

    Article  CAS  PubMed  Google Scholar 

  57. Hare JM, Stamler JS. NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 2005;115(3):509–17.

    CAS  PubMed  Google Scholar 

  58. Damy T, Ratajczak P, Shah AM, et al. Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 2004;363(9418):1365–7.

    Article  CAS  PubMed  Google Scholar 

  59. Radomski MW, Moncada S. Regulation of vascular homeostasis by nitric oxide. Thromb Haemost 1993;70(1):36–41.

    CAS  PubMed  Google Scholar 

  60. Chung AW, Radomski A, Alonso-Escolano D, et al. Platelet-leukocyte aggregation induced by PAR agonists: regulation by nitric oxide and matrix metalloproteinases. Br J Pharmacol 2004;143(7):845–55.

    Article  CAS  PubMed  Google Scholar 

  61. Mungrue IN, Gros R, You X, et al. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 2002;109(6):735–43.

    CAS  PubMed  Google Scholar 

  62. Zucker IH, Liu JL. Angiotensin II-nitric oxide interactions in the control of sympathetic outflow in heart failure. Heart Fail Rev 2000;5(1):27–43.

    Article  CAS  PubMed  Google Scholar 

  63. Thai HM, Do BQ, Tran TD, Gaballa MA, Goldman S. Aldosterone antagonism improves endothelial-dependent vasorelaxation in heart failure via upregulation of endothelial nitric oxide synthase production. J Card Fail 2006;12(3):240–5.

    Article  CAS  PubMed  Google Scholar 

  64. Steppan J, Ryoo S, Schuleri KH, et al. Arginase modulates myocardial contractility by a nitric oxide synthase 1-dependent mechanism. Proc Natl Acad Sci U S A 2006;103(12):4759–64.

    Article  CAS  PubMed  Google Scholar 

  65. Taylor AL, Ziesche S, Yancy C, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med 2004;351:2049–57.

    Article  CAS  PubMed  Google Scholar 

  66. Devaux B, Scholz D, Hirche A, Klovekorn WP, Schaper J. Upregulation of cell adhesion molecules and the presence of low grade inflammation in human chronic heart failure. Eur Heart J 1997;18(3):470–9.

    CAS  PubMed  Google Scholar 

  67. Andreassen AK, Nordoy I, Simonsen S, et al. Levels of circulating adhesion molecules in congestive heart failure and after heart transplantation. Am J Cardiol 1998;81(5):604–8.

    Article  CAS  PubMed  Google Scholar 

  68. Serebruany VL, Murugesan SR, Pothula A, et al. Increased soluble platelet/endothelial cellular adhesion molecule-1 and osteonectin levels in patients with severe congestive heart failure. Independence of disease etiology, and antecedent aspirin therapy. Eur J Heart Fail 1999;1(3):243–9.

    Article  CAS  PubMed  Google Scholar 

  69. Yin WH, Chen JW, Jen HL, et al. The prognostic value of circulating soluble cell adhesion molecules in patients with chronic congestive heart failure. Eur J Heart Fail 2003;5(4):507–16.

    Article  CAS  PubMed  Google Scholar 

  70. Tousoulis D, Homaei H, Ahmed N, et al. Increased plasma adhesion molecule levels in patients with heart failure who have ischemic heart disease and dilated cardiomyopathy. Am Heart J 2001;141(2):277–80.

    Article  CAS  PubMed  Google Scholar 

  71. Schnee JM, Hsueh WA. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res 2000;46(2):264–8.

    Article  CAS  PubMed  Google Scholar 

  72. Pigott R, Dillon LP, Hemingway IH, Gearing AJ. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun 1992;187(2):584–9.

    Article  CAS  PubMed  Google Scholar 

  73. Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001;38(2):307–14.

    Article  CAS  PubMed  Google Scholar 

  74. Thurberg BL, Collins T. The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Curr Opin Lipidol 1998;9(5):387–96.

    Article  CAS  PubMed  Google Scholar 

  75. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 1996;274(5288):787–9.

    Article  PubMed  Google Scholar 

  76. Erl W, Hansson GK, de Martin R, Draude G, Weber KS, Weber C. Nuclear factor-kappa B regulates induction of apoptosis and inhibitor of apoptosis protein-1 expression in vascular smooth muscle cells. Circ Res 1999;84(6):668–77.

    CAS  PubMed  Google Scholar 

  77. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996;274(5288):782–4.

    Article  CAS  PubMed  Google Scholar 

  78. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. Nuclear factor (NF)-kappaBregulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 1998;188(1):211–6.

    Article  CAS  PubMed  Google Scholar 

  79. Maulik N, Goswami S, Galang N, Das DK. Differential regulation of Bcl-2, AP-1 and NF-kappaB on cardiomyocyte apoptosis during myocardial ischemic stress adaptation. FEBS Letter 1999;443(3):331–6.

    Article  CAS  Google Scholar 

  80. Martinon F, Holler N, Richard C, Tschopp J. Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 2000;468(2–3):134–6.

    Article  CAS  PubMed  Google Scholar 

  81. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M. NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 1999;5(5):554–9.

    Article  CAS  PubMed  Google Scholar 

  82. Frantz S, Kelly RA, Bourcier T. Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J Biol Chem 2001;276(7):5197–203.

    Article  CAS  PubMed  Google Scholar 

  83. Gupta S, Sen S. Role of the NF-kappaB signaling cascade and NF-kappaB-targeted genes in failing human hearts. J Mol Med 2005;83(12):993–1004.

    Article  CAS  PubMed  Google Scholar 

  84. Jankowska EA, von Haehling S, Czarny A, et al. Activation of the NF-kappaB system in peripheral blood leukocytes from patients with chronic heart failure. Eur J Heart Fail 2005;7(6):984–90.

    Article  CAS  PubMed  Google Scholar 

  85. Wong SC, Fukuchi M, Melnyk P, Rodger I, Giaid A. Induction of cyclooxygenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive heart failure. Circulation 1998;98(2):100–3.

    CAS  PubMed  Google Scholar 

  86. Fukuchi M, Hussain SN, Giaid A. Heterogeneous expression and activity of endothelial and inducible nitric oxide synthases in end-stage human heart failure: their relation to lesion site and beta-adrenergic receptor therapy. Circulation 1998;98(2):132–9.

    CAS  PubMed  Google Scholar 

  87. Gupta S, Young D, Sen S. Inhibition of NF-kappaB induces regression of cardiac hypertrophy, independent of blood pressure control, in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2005;289(1):H20–9.

    Article  CAS  PubMed  Google Scholar 

  88. Kawamura N, Kubota T, Kawano S, et al. Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy. Cardiovasc Res 2005;66(3):520–9.

    Article  CAS  PubMed  Google Scholar 

  89. Kawano S, Kubota T, Monden Y, et al. Blockade of NF-ÎşB improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol 2006.

    Google Scholar 

  90. Xuan YT, Tang XL, Banerjee S, et al. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 1999;84(9):1095–109.

    CAS  PubMed  Google Scholar 

  91. Morgan EN, Boyle EM Jr, Yun W, et al. An essential role for NF-kappaB in the cardioadaptive response to ischemia. Ann Thorac Surg 1999;68(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  92. Caforio AL, Mahon NJ, Tona F, McKenna WJ. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: pathogenetic and clinical significance. Eur J Heart Fail 2002;4(4):411–7.

    Article  PubMed  Google Scholar 

  93. Limas CJ, Goldenberg IF, Limas C. Autoantibodies against beta-adrenoceptors in human idiopathic dilated cardiomyopathy. Circ Res 1989;64(1):97–103.

    CAS  PubMed  Google Scholar 

  94. Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F. Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 1999;99(5):649–54.

    CAS  PubMed  Google Scholar 

  95. Jahns R, Boivin V, Siegmund C, Boege F, Lohse MJ, Inselmann G. Activating beta-1—adrenoceptor antibodies are not associated with cardiomyopathies secondary to valvular or hypertensive heart disease. J Am Coll Cardiol 1999;34(5):1545–51.

    Article  CAS  PubMed  Google Scholar 

  96. Jahns R, Boivin V, Hein L, et al. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 2004;113(10):1419–29.

    CAS  PubMed  Google Scholar 

  97. Mobini R, Staudt A, Felix SB, et al. Hemodynamic improvement and removal of autoantibodies against beta1-adrenergic receptor by immunoadsorption therapy in dilated cardiomyopathy. J Autoimmun 2003;20(4):345–50.

    Article  CAS  PubMed  Google Scholar 

  98. Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1—deficient mice. Nat Med 2003;9(12):1477–83.

    Article  CAS  PubMed  Google Scholar 

  99. Lauer B, Schannwell M, Kuhl U, Strauer BE, Schultheiss HP. Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J Am Coll Cardiol 2000;35(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  100. Afanasyeva M, Georgakopoulos D, Rose NR. Autoimmune myocarditis: cellular mediators of cardiac dysfunction. Autoimmun Rev 2004;3(7—8):476–86.

    Article  CAS  PubMed  Google Scholar 

  101. Afanasyeva M, Georgakopoulos D, Belardi DF, et al. Quantitative analysis of myocardial inflammation by flow cytometry in murine autoimmune myocarditis: correlation with cardiac function. Am J Pathol 2004;164(3):807–15.

    PubMed  Google Scholar 

  102. Yu Q, Watson RR, Marchalonis JJ, Larson DF. A role for T lymphocytes in mediating cardiac diastolic function. Am J Physiol Heart Circ Physiol 2005;289(2):H643–51.

    Article  CAS  PubMed  Google Scholar 

  103. Afanasyeva M, Georgakopoulos D, Belardi DF, et al. Impaired up-regulation of CD25 on CD4+ T cells in IFN-gamma knockout mice is associated with progression of myocarditis to heart failure. Proc Natl Acad Sci USA 2005;102(1):180–5.

    Article  CAS  PubMed  Google Scholar 

  104. Yndestad A, Holm AM, Muller F, et al. Enhanced expression of inflammatory cytokines and activation markers in T-cells from patients with chronic heart failure. Cardiovasc Res 2003;60(1):141–6.

    Article  CAS  PubMed  Google Scholar 

  105. Satoh S, Oyama JI, Suematsu N, et al. Increased productivity of tumor necrosis factor-alpha in helper T cells in patients with systolic heart failure. Int J Cardiol 2006;111:405–12.

    Article  PubMed  Google Scholar 

  106. Sakatani T, Hadase M, Kawasaki T, Kamitani T, Kawasaki S, Sugihara H. Usefulness of the percentage of plasma lymphocytes as a prognostic marker in patients with congestive heart failure. Jpn Heart J 2004;45(2):275–84.

    Article  PubMed  Google Scholar 

  107. Iaccarino G, Barbato E, Cipolletta E, et al. Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur Heart J 2005;26(17):1752–8.

    Article  CAS  PubMed  Google Scholar 

  108. Maekawa Y, Anzai T, Yoshikawa T, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling. J Am Coll Cardiol 2002;39(2):241–6.

    Article  PubMed  Google Scholar 

  109. Satoh M, Shimoda Y, Maesawa C, et al. Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol 2006;109(2):226–34.

    Article  PubMed  Google Scholar 

  110. Zhao SP, Xu TD. Elevated tumor necrosis factor alpha of blood mononuclear cells in patients with congestive heart failure. Int J Cardiol 1999;71(3):257–61.

    Article  CAS  PubMed  Google Scholar 

  111. Conraads VM, Bosmans JM, Schuerwegh AJ, et al. Intracellular monocyte cytokine production and CD 14 expression are up-regulated in severe vs mild chronic heart failure. J Heart Lung Transplant 2005;24(7):854–9.

    Article  PubMed  Google Scholar 

  112. Goser S, Ottl R, Brodner A, et al. Critical role for monocyte chemoattractant protein-1 and macrophage inflammatory protein-1alpha in induction of experimental autoimmune myocarditis and effective anti-monocyte chemoattractant protein-1 gene therapy. Circulation 2005;112(22):3400–7.

    Article  PubMed  CAS  Google Scholar 

  113. Niu J, Azfer A, Kolattukudy PE. Monocyte-specific Bcl-2 expression attenuates inflammation and heart failure in monocyte chemoattractant protein-1 (MCP-1)-induced cardiomyopathy. Cardiovasc Res 2006.

    Google Scholar 

  114. Hara M, Matsumori A, Ono K, et al. Mast cells cause apoptosis of cardiomyocytes and proliferation of other intramyocardial cells in vitro. Circulation 1999;100(13):1443–9.

    CAS  PubMed  Google Scholar 

  115. Chancey AL, Brower GL, Janicki JS. Cardiac mast cell-mediated activation of gelatinase and alteration of ventricular diastolic function. Am J Physiol Heart Circ Physiol 2002;282(6):H2152–8.

    CAS  PubMed  Google Scholar 

  116. Shiota N, Rysa J, Kovanen PT, Ruskoaho H, Kokkonen JO, Lindstedt KA. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J Hypertens 2003;21(10):1935–44.

    Article  CAS  PubMed  Google Scholar 

  117. Engel D, Peshock R, Armstrong RC, Sivasubramanian N, Mann DL. Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF over expression. Am J Physiol 2004;287:H1303–11.

    CAS  Google Scholar 

  118. Singh U, Devaraj S, Dasu MR, Ciobanu D, Reusch J, Jialal I. C-reactive protein decreases interleukin-10 secretion in activated human monocyte-derived macrophages via inhibition of cyclic AMP production. Arterioscler Thromb Vasc Biol 2006;26:2469–75.

    Article  CAS  PubMed  Google Scholar 

  119. Verma S, Szmitko PE, Ridker PM. C-reactive protein comes of age. Cardiovascular Medicine 2005;2:29–36.

    CAS  PubMed  Google Scholar 

  120. Torre-Amione G, Sestier F, Radovancevic B, Young J. Broad modulation of tissue responses (immune activation) by celacade may favorably influence pathologic processes associated with heart failure progression. Am J Cardiol 2005;95(S):30C–37C.

    Article  CAS  PubMed  Google Scholar 

  121. Yndestad A, Kristian DJ, Oie E, Ueland T, Gullstad L, Aukrust P. Systemic inflammation in heart failure—the whys and wherefores. Heart Fail Rev 2006;11:83–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Adams, K.F., Ng, T.M.H. (2008). Immune System Alterations in Acute Heart Failure. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics