
Chapter 6 Experimentation and Output Analysis 

6.1 Overview of the Issue 

In this chapter we explore the activities of experimentation and output 
analysis, which are both central to the success of any modelling and 
simulation project. In other words, we examine the process of correctly 
formulating and carrying out goal-directed experiments with the 
simulation program and then extracting meaningful information from the 
data acquired via its output variables. The underlying complexity here 
arises from the uncertainty that is superimposed on all variables in any 
DEDS model by the random nature of input variables and by the random 
behaviour of ‘internal’ processes (e.g., message service time at the nodes 
of a communications network or failure characteristics of machines in a 
manufacturing plant). As we have previously noted, these random 
phenomena represent one of the essential differences between models 
arising from the DEDS context and those arising from the realm of 
continuous-time dynamic systems. 

A simulation program provides an observation window onto a variety of 
random phenomena that unfold as a result of the model’s execution. Each 
can be linked to a random variable and some of these random variables are 
of special interest from the perspective of the project goals. 

The notion of output variables was explored in the discussions of both 
Chapters 2 and 4 where it was stressed that any model necessarily has one 
or more such variables associated with it. This follows simply because 
they serve as the conduits for the data that are essential for the resolution 
of the project’s goals. In these earlier discussions we introduced two 
categories of output variable called point-set output variables (PSOVs) and 
derived scalar output variables (DSOVs).

There are two types of variable in the PSOV category; namely, time 
variables and sample variables. These share a common means for  
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delivering data from any particular execution of the simulation program, 
namely, through the accumulation of a finite set of (possibly) time-indexed 
values. However, the specific values in such a set are rarely of interest. 
Instead what is of interest is typically some property of these accumulated 
data, for example, minimum, maximum, average, or number (a count of 
the number of values in the set). Such a value is computed and assigned to 
a designated scalar variable. Such variables are necessarily random 
variables and they fall into the category of DSOVs. Our interest 
throughout this chapter is primarily with DSOVs and for convenience we 
refer to these simply as output variables. 

Let’s consider some examples of DSOVs that might arise at the level of 
the ABCmod conceptual modelling framework as discussed in Chapter 4. 
The list below demonstrates the most fundamental feature of any such 
variable; namely that it always has a ‘definition’, that is, a meaning in 
terms of the behaviours that are represented within the conceptual model. 
Although this may appear obvious, it is a feature that must be 
unambiguously documented in the statement of project goals.

An output variable YA which represents the proportion of customers that 
waited for more than five minutes for service at Kojo’s Kitchen in the 
food court 
An output variable YB, which represents the average time spent waiting 
for tugboat service by the tankers that pass through an ocean port 
model 
An output variable YC, which represents the maximum number of 
messages in the input buffer of a particular node P of a 
communications network, over a 24 hour period 
An output variable YD, which represents the portion of time that all the 
attendants in a full-service gas station are busy, over the course of a 
business day 

Some details for these four variables are presented in Table 6.1 in terms 

these variables by carrying out an operation on some underlying output set 
of data values. 

of the notions in our ABCmod framework as discussed in Chapter 4. In  
particular the table shows how a value might be established for each of  
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Any particular output variable listed in Table 6.1 acquires a value as a 
consequence of the execution of its respective simulation program (i.e., as 
a consequence of a ‘simulation run’ or simply a ‘run’). However, this 
value is not a direct outcome of the experiment but rather is obtained by 
carrying out an operation on a set of data values as illustrated in Figure 
5.1. In the case of YA the data set is the sample set 
PHI[C.Customer.WaitTime] which is populated by values of the sample 
variable Customer.WaitTime (an attribute of the consumer entity class 
called Customer). Each Customer instance that passes through Kojo’s 
Kitchen contributes a value to PHI[C.Customer.WaitTime], and for any 
particular simulation run, the value acquired by YA is obtained as 
PropGT(5,PHI(C.Customer.WaitTime)). Here PropGT(Val,SampleSet) is a 

p1,1, p1,2, ...p1,m1 p2,1, p2,2, ...p2,m2 pn,1, pn,2, ...pn,mn

Simulation 

Run

PSOV Data 

1 2 n•   •   •

•   •   •

Set 

Operator

y1

Set 

Operator

y2

Set 

Operator

yn

Output Data 

(DSOV) 

Ouput Set

•   •   •

Ouput Set Ouput Set

FIGURE 6.1. Generation of data from multiple simulation runs. 

As previously observed, any DSOV is a random variable. There are 
certainly circumstances where interest in a random variable can focus 
simply on a particular value (e.g., the sum of the dots showing on a pair of 
dice when the dice are thrown during a game of chance). However, the 
value of a DSOV acquired from a single simulation run generally falls far 
short of providing useful information from the perspective of the 
requirements of project goals. The information that is needed typically 

mean value estimate that appears to coincide directly with some DSOV 

                                                     1 Strictly speaking, this is not entirely correct. In the context of a steady-state 
study, there does exist an approach called the method of batch means where all 

user-defined module specified in the ABCmod conceptual model for the 
Kojo's Kitchen project in Chapter 5 (see Table 5.10). 

A frequent misunderstanding occurs when the project goals require a 

relates to the values of the parameters of the distribution of the DSOV (e.g. 

organised to yield independent observations.

required data are generated from a single long simulation run. A brief discussion 
can be found in Section 6.3.2. 

                                 1
formulated from results obtained from multiple runs that have been 
mean, variance) and meaningful estimates of such parameters can only be 
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(for definiteness, let’s call it Y) that is defined as an average. Consider, for 
example, our port project where the mean waiting time of tankers is 
required. A particular simulation run will yield a sample set whose 
members are the waiting times of the tankers that passed through the port 
during that run. The average of the values in this sample set (which we 

ˆ

For the most part, our interest in experimentation focuses on the mean 
values of designated output variables within the simulation program. It 
needs to be recognised, however, that the determination of an exact value 
for these is rarely feasible. Experiments with the simulation program can, 
at best, deliver the data from which an estimate of the mean (called a point
estimate) can be formulated together with an assessment of the quality of 
the estimate (i.e., a confidence interval). Guidance for determining what 
experiments need to be carried out and how the acquired data need to be 
handled in order to obtain credible estimates are provided by some of the 
fundamental results from probability theory. An overview of these can be 
found in the latter sections of Annex 1. The topic is explored in the 
discussions below. 

6.2 Bounded Horizon Studies 

y ) would represent a single observation of the DSOV, Y.

 

We now consider the basic problem of analysing the values acquired by an 

zon study. From a collection of values acquired from n simulation runs, 
we determine a point estimate of the mean (i.e., a single number whose 
validity has some credible basis) and then formulate an interval in which 
the point estimate lies with a prescribed degree of confidence. 

One might be tempted here to use  as an estimate of the mean value 
that we seek (namely, the mean waiting time of tankers that pass through 
the port). However there generally is a correlation among the values be-
cause, for example, a long wait by some tanker will likely result in long 
waits by succeeding tankers thereby introducing a bias in the collected 
data. This circumstance precludes the use of the standard methods of sta-
tistics which depend on the assumption of independence, for example. for 
the determination of the confidence interval that we discuss below. It is 
for this reason that suitably replicated simulation runs (or other equivalent 
approaches) are required which will generate a collection of independent 
observations of Y from which the desired mean value estimate and a con-
fidence interval can be formulated. This is achieved by proper manage-
ment of the seeds used in the random variate generation procedures that 
are embedded in the simulation model. 

output variable in the simulation program in the case of a bounded hori-

ŷ

denote by 
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The considerations that follow rely heavily on the results presented in 
Annex A1, in particular the results in Sections A1.5 through A1.7. 

6.2.1  Point Estimates 

n

k
kY

n
nY

1

1
)(

and we regard the Yks as surrogate random variables for Y that are 
associated with a sequence of n correctly replicated experiments with M
(the variable Yk is associated with experiment k). All  have the same 
distribution as Y because they reflect the same process (namely the 
simulation program M). Furthermore, because they are linked to a 
sequence of correctly replicated experiments, we can assume that the

Correctly replicated simulation runs are a key requirement in 
formulating the estimate that we seek. The implication here is that there is 
appropriate management of the seeds used to initialise the various random 
number generators from run to run to create a meaningful set of 
independent and identically distributed observations (initial conditions, 
however, must remain invariant except when their values are part of the 
random envelope). 

On the basis of the above, a point estimate of µ can be obtained in the 
following way. 

1. Choose a suitable value for n, the number of replications (in principle, 
n needs to be large, but a value in the order of 30 is generally 
satisfactory).

2. Collect the n observed values y1, y2, . . . , yn for the random variables 
Yk, k = 1, 2, . . . , n, that result from n replicated simulation runs of the 
simulation program M.

3. Compute:

n

k
ky

n
ny

1

1
)( .

The numerical value that results for )(ny  is then taken to be the point 
estimate for µ = E[Y] that we seek. 

Suppose Y is an output variable (i.e. DSOV) of the simulation program M 

estimate of µ = E[Y]. The fundamental result from probability theory upon 

Annex A1). The interpretation in our context is that )(nY  approaches µ as 
n becomes large where:  

and we seek an estimate of the mean of the distribution of Y, namely an 

Yk’s

Yk’s
are independent. Hence the Yk  can be taken to be a set of independent 
identically distributed (IID) random variables. 

which we rely is the strong law of large numbers (see Section A1.5 of 
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6.2.2  Interval Estimation 

The procedure is outlined below and is based entirely on the discussion 

1. Choose values for C,  and 
as well, an initial value for n that is not smaller than 20. 

2. Collect the n  observed  values y1,  y2,  . . . , yn  for  the  random 
variables Yk , k  =  1, 2, . . . , n,  that  result  from n  replicated 
simulation runs of the simulation program, M.

3. From tabulated  data  for  the  Student t-distribution,  determine tn-1,a

where a = (1 – C)/2.
4. Compute: 

n

nst
n

n

nyy

ns

y
n

ny

n

n

k

k

n

k

k

)(
)(

1

))((

)(

1
)(

,1

1

2

2

1

(6.1)

in Section A1.7 of Annex 1 (Equation (A1.36) has particular relevance). 

r and  for  the  confidence  level parameter 

We now expand our task by undertaking to find a suitable value for the 

, ,

estimate )(ny . We know from Section A1.7 that an interval (called the 
confidence interval) can be established within which µ falls with a 

n-1,a ns /)(

on the Student t-distribution
 value tn-1,a.

The quality criterion we introduce is the requirement that, with 
confidence 100C% (0 < C < 1), | )(ny µ| < *. In other words, we want 
to ensure that (with a prescribed level of confidence) the interval half 
length (n) is less than a specific value denoted by *. A possible choice 
for * is r )(ny where r is a value chosen in the range (0, 1). With this 
choice, the maximum displacement of the estimate from µ is proportional 
to the value of the estimate itself. Note that our quality measure can be 
interpreted as 

r
ny )(

number of replications n which will ensure a particular quality  for the 

[y(n) (n), y(n) (n)] where (n) = (t

prescribed level of confidence. This interval has the form 

n)(

n ), and  s(n)  is  

(n) the confidence inter-
val half length.  Its  value  is  clearly  dependent 
an estimate of the standard deviation . We call
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5. If  (n) < * = r )(ny (or (n) / )(ny < r)  then accept  )(ny  as the 
point estimate of µ and end the procedure, otherwise continue to 
Step 6. 

6. Choose n no smaller than 3 and collect additional 
observations yn+1, yn+2, . . . , yn+ n  through a  further n replications, 
replace n with n + n, and repeat from Step 3. 

6.2.3  Output Analysis for Kojo’s Kitchen Project 

This section examines how the analysis techniques described in Section 
6.2.2 can be applied to achieving the goal set out in the Kojo’s Kitchen 
project. Recall that the goal set out in Chapter 5 was to investigate the 
impact on the output variable PropLongWait (i.e., the proportion of 
customers waiting longer than five minutes) of adding an additional 
employee. The Java event-scheduling simulation program presented in 
Section 5.4.2 is used to experiment with the simulation model and generate 
data for analysis. The collected data are analysed using a number of useful 
data analysis tools available in Microsoft Excel. 

Figure 6.2 shows the Java method used to carry out multiple simulation 

    The first part of the method generates the random seeds used in all the 
simulation runs. The CERN Java package offers a Class Random-
SeedGenerator that provides the means to generate appropriate 
(uncorrelated) random seeds. This ensures that the different simulation 
runs provide independent values for the PropLongWait output variable. 
Note also that the seeds are stored in an array of Seeds objects.

 Thus they can be
 reused when executing the runs for the alternate case. This is important
 for comparing the two cases as discussed in Section 6.4. 

Also
 note that four seeds make up a Seedsobject, one for each random 
number generator used in the simulation program. 

   For each simulation run, a new KojoKitchen object is created using the 
Class constructor. The constructor provides the data necessary for the 
simulation run, that is, specifies the observation interval (the first two 
arguments specify the right- and left-hand boundaries of the interval), a 
value for the empSchedCase parameter (either Case1 or Case2), and 
finally a Seeds

  After each run, the value generated for PropLongWait is displayed 
along with the run number. The output of the running program can be 
redirected into a file and subsequently loaded into an Excel worksheet 
for analysis. 

runs with the  Kojo’s Kitchen simulation model (see Section 5.3).  Note the 
following. 

 object to seed the random number generators. Recall that 
Case 1 is the base case and Case 2 is the situation where the third employee 
is hired during busy periods. 
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FIGURE 6.2. Java method for experimentation with the Kojo’s Kitchen simulation 
program.

class KojoExperiment1 
{
   public static void main(String[] args) 
   { 
       final int NUMRUNS = 10000;
       int i; 
       Seeds[] sds = new Seeds[NUMRUNS]; 
       KojoKitchen kojo;  // simulation program 
       double propLongWait; 

       RandomSeedGenerator rsg = new RandomSeedGenerator(); 
       for(i=0 ; i<NUMRUNS ; i++) 
 sds[i] = new Seeds(rsg.nextSeed(),rsg.nextSeed(), 
        rsg.nextSeed(),rsg.nextSeed()); 

       // Loop for NUMRUN simulation runs for each case 
       // Case 1 
       System.out.println("Case 1 - no additional employee"); 
       for(i=0 ; i < NUMRUNS ; i++) 
       { 
          kojo = new KojoKitchen(0.0,660.0,KojoKitchen.Case1,sds[i]);
          kojo.runSimulation(); 
          propLongWait = kojo.getPropGT(5); 
          System.out.println((i+1)+", "+propLongWait); 
       } 
       // Case 2 
       System.out.println("Case 2 - add employee during busy times"); 
       for(i=0 ; i < NUMRUNS ; i++) 
       { 
          kojo = new KojoKitchen(0.0,660.0, KojoKitchen.Case2,sds[i]);
          kojo.runSimulation(); 
          propLongWait = kojo.getPropGT(5); 
          System.out.println((i+1)+", "+propLongWait); 
       } 
   } 
}

       // Get a set of uncorrelated seeds 
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Table 6.2 shows the values for propLongWait for the first 20 simulation 
runs for each of the two cases. The values for the point estimate ( )(ny ),
the standard deviation (s(n)), and the confidence interval half length ( (n))
are shown in the table, with n = 20. These were computed by using 

)()( nny  and right boundary )()( nny  of the confidence
 interval are given by CI Min and CI Max, respectively. 

TABLE 6.2. Analysis of generated data from the first 20 simulation runs. 

Run Case 1 Case 2

1 0.634 0.263

2 0.595 0.209

3 0.256 0.067

4 0.532 0.335

5 0.282 0.049

6 0.649 0.278

7 0.458 0.024

8 0.515 0.158

9 0.618 0.062

10 0.667 0.348

11 0.483 0.238

12 0.524 0.107

13 0.663 0.447

14 0.235 0.053

15 0.404 0.051

16 0.472 0.112

17 0.425 0.094

18 0.565 0.124

19 0.392 0.048

20 0.381 0.123

0.487 0.160

s(n) 0.134 0.121

(n) 0.052 0.047

CI Min 0.436 0.113

CI Max 0.539 0.206

)(ny

Equation (6.1) with a 90% confidence level (i.e C= 0.9). The left 
boundary 
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Table 6.3 shows for each of the two cases the values of )(ny , s(n), and 

(n) (computed using Equation (6.1)) as well as the boundaries of the 
confidence interval (CI Min and CI Max) and the ratio (n)/ )(ny  when n
(the number of simulation runs) is increased. Note from the rightmost 
column how the ratio (n)/ )(ny  decreases as n increases. This is mainly a 
consequence of a decreasing value for the confidence interval half length 
(n).

Observe that for Case 1, with 20 runs the half length of the confidence 
interval is essentially 10% of the point estimate (see rightmost column 
where the value is 0.106). However with 20 runs, the interval half length in 
Case 2 is almost 30% of the point estimate (value in rightmost column is 
0.293). For Case 2, 100 runs are required to achieve a comparable 
confidence interval as Case 1. 

TABLE 6.3. Impact of number of runs on the confidence interval. 

n s(n) (n) CI Min CI Max

20 0.487 0.134 0.052 0.436 0.539 0.106

30 0.503 0.125 0.039 0.464 0.542 0.077

40 0.502 0.119 0.032 0.471 0.534 0.063

60 0.504 0.116 0.025 0.479 0.529 0.049

80 0.499 0.129 0.024 0.475 0.523 0.048

100 0.503 0.132 0.022 0.481 0.524 0.044

1000 0.510 0.120 0.006 0.504 0.517 0.012

10000 0.508 0.126 0.002 0.506 0.510 0.004

n s(n) (n) CI Min CI Max

20 0.160 0.121 0.047 0.113 0.206 0.293

30 0.192 0.124 0.039 0.153 0.230 0.201

40 0.193 0.119 0.032 0.161 0.225 0.165

60 0.187 0.115 0.025 0.162 0.211 0.133

80 0.185 0.121 0.023 0.162 0.207 0.122

100 0.187 0.123 0.020 0.167 0.207 0.109

1000 0.188 0.121 0.006 0.181 0.194 0.034

10000 0.184 0.120 0.002 0.182 0.186 0.011

Case 1

Case 2

(n)y (n)y
(n)

(n)y (n)y
(n)

6.3 Steady-State Studies 

The fundamental requirement in a steady-state study is the postponement 
of data collection during a simulation run until it is apparent that the 
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simulation model is operating under steady-state conditions; that is, the 
stochastic processes associated with the output variables of interest have 
become stationary. A necessary (but not sufficient) condition for steady-
state behaviour of the simulation model is the requirement that the 
underlying random variables associated with autonomous stochastic 
processes, such as arrival rates and service rates, are themselves stationary. 
But even when this is the case, the model’s initial conditions usually give 
rise to circumstances that cause dependent stochastic processes in the 
simulation model to pass through a transient phase at the start of a 
simulation run.

Recall that for steady-state studies, the right-hand boundary of the 
observation interval is not specified. This provides the flexibility to 
execute a simulation run for as long as necessary in order to first reach 
steady-state conditions and then acquire sufficient data to permit 
meaningful conclusions. Consequently the execution of experiments for 
steady-state studies must address two important issues: 

Determining a warm-up period: A transient period is always present at 
the beginning of any simulation run. Behaviour data from this interval 
are (by definition) incompatible with the steady-state requirements of 
the study. The implication here is that a warm-up period that precedes 
the collection of data needs to be recognised. The duration of this 
period cannot be predicted and hence a mechanism for determining the 
end of the warm-up period must be incorporated into the 
experimentation procedure. Data collection can begin only after this 
transient, or warm-up period, has come to an end.  
Establishing confidence in the conclusions. A single simulation run 

estimate of the mean of the output variable (or
 variables) of interest can be calculated. Provided the length of the
 run has generated a sample of sufficiently large size, the estimate
 can have reasonable credibility (e.g., on the basis of the law of large
 numbers)  However,  a confidence  interval  for  any  such  estimate
 requires a  collection  of independent  observations in order to apply
 the techniques described in Section 6.2.2. 

6.3.1  Determining the Warm-up Period 

Considerable research effort has addressed the problem of establishing a 
suitable warm-up period for a simulation run, that is, an interval which 
allows sufficient time for the dependent stochastic process of interest to 

average method is one of the many available approaches. It is graphically 

can  be  executed for an  extended observation interval to yield data 
from which a point 

reach a steady-state (see, e.g., [6.4], [6.6], [6.7], [6.8]). The Welch moving 
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oriented, relatively straightforward, and provides reasonable estimates. 
This section outlines the application of this method (a more extensive 
presentation can be found in Law and Kelton [6.5]). 

The Welch moving average method relies on a relatively small number 
of simulation run replications (e.g., five to ten). The duration of each 
replication needs to be sufficiently long so that it extends beyond the 
transient period. A typical replication is shown in Figure 6.3 which 
illustrates a representative transient condition at the start of the simulation 
run (e.g., a case where the simulation model begins without any consumer 

(simulated) time which has been compartmentalised into m
 time cells. The vertical axis shows how the average value for some output
 variable  might change  if separate averages were computed within the
 time cells. The 

time cell D, changes in average value no longer occur and hence steady-
state can be assumed. 

Selecting the size of the time cells and the number of time cells (which 
is equivalent to establishing the length of the simulation run) depends on 
the underlying nature of the simulation model. The size of the time cell 
should be large enough to be provide reasonable results (i.e., enough data 
points to compute a credible average within the cell), and yet short enough 
to be able to detect the existence of the transient. 

Replication j generates an output set of nj values; for example, {yk,j: k = 
1, 2, . . . , nj}. The average of those values that fall into time cell i is 
computed to produce jiy , which is the ith cell average for the jth

replication. Thus n replications will produce the set of n averages { jiy , : j = 

1, 2, . . . , n} where i is the time cell index. The following steps are carried 
out to obtain an estimate of the time cell index where the system transient 
terminates, in other words, the system reaches steady-state. 

1. i

 averages ( jiy , ); that is, 

n

j

jii y
n

a

1

,

1
.

entity  instances  being present). The  horizontal axis  in Figure 6.3 
corresponds to 

changing shape of a hypothesised distribution function 
for this output variable is superimposed. The Figure shows that starting at 

Obtain the value a  as the average over the n replications of the ith cell
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FIGURE 6.3. Reaching steady-state.

2. The values ia , i = 1, 2, . . . , m  usually  vary  considerably.  If 
plotted against index i the resulting graph is ‘choppy’ and difficult 
to interpret. A smoothing operation is required in order to smooth 

the trend. For this purpose, the moving-average values 
)(wai are  computed  using  Equation  (6.2).  The  parameter w

represents a window size that controls the smoothing operation. Its 
selection is by trial and error. Usually a number of values for w
need to be tried. The objective is to find as small a value as 
possible that provides the desired smoothing effect. 
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3. Equation (6.2) is  not  as  complex  as  it  might  appear.  When i > w
there are w cell averages on either  side  of ia  that  are  averaged  to 
produce the  running  average  value )(wai .  When  i w  there  are 
not enough values preceding time cell ito fill the window. In this 

out rapid variations to obtain a smoother curve that captures 
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averages are computed for the case where w = 3. 

 The values )(wai are plotted against the cell index i and it should be 

practice is to extend the apparent length of the warm-up period (say by 
30%). The idea here is to err on the safe side by making the warm-up 

TABLE 6.4. Welch running average with w = 3. 

i )3(ia  Equation )3(ia Expansion

1

1

0

0l

lia

1

1a

2

3

1

1l

lia

3

321 aaa

3

5

2

2l

lia

5

54321 aaaaa

4

7

3

3l

lia

7

7654321 aaaaaaa

5

7

3

3l

lia

7

8765432 aaaaaaa

.

.

.

.

.

.

.

.

.

m – 3

7

3

3l

lia

7

123456 mmmmmmm aaaaaaa

case w is replaced with  (i – 1).  Table  6.4  shows  how  the  running 

apparent from this graph when steady-state has been achieved. A good 

period somewhat longer than necessary rather than inappropriately short.
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We illustrate the use of the Welch moving average method using 

variables of interest are berth group size and the tanker total wait time. 
Figures 6.4 and 6.5 show the results of 10 simulation runs (n = 10) each of 
duration 15 weeks. The time cells have a width of 1 week which means 
that m = 15. The following observations are noteworthy. 

   In the case of the berth group size, there is no apparent transient. Even 
without the use of running averages (see Figure 6.4a), the graph is 
relatively smooth. This result can be attributed to the small size of the 
group (namely, three) which results in the available berths being quickly 
filled by the first few arrivals of tankers. 

    A transient is certainly apparent for the tanker total wait time as shown 
in Figure 6.5 and moving averages are required to smooth out the graph. 
A window size of five provides a suitable result and shows that the 
transient lasts for approximately three weeks. Either four or five weeks 
can be selected as a suitable warm-up period. 

     The warm-up period has relevance for the elimination of the transient in 
the tanker total wait time output variable. However, this does not 
preclude the collection of berth group size data during the warm-up 
period.

data to be collected during a simulation run and this provides the basis for 
a number of methods for generating the necessary data for analysis (i.e., a 

experimentation with the port simulation program as presented in Section 
6.3.3. An overview of the method of batch means is also given. A more 
comprehensive presentation of the available options can be found in Law 
and  Kelton [6.5]. 

version 1 of our port project (no intervention and no storms). The output 

Extending the right-hand boundary of the observation interval allows more 

set of IID values  for the output variable). We examine two approaches. 

 Our problem continues to be the determination of an estimate

as previously noted, in steady-state studies we must reduce the effect of 

6.3.2  Collection and Analysis of Results 

of the mean of an output variable Y , i.e. = E[Y ]. However,

The replication–deletion method is described and illustrated using 

µ

transient data, and ideally eliminate it. 
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FIGURE 6.4. Welch method applied to berth group size. 
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FIGURE 6.5. Welch method applied to tanker total wait time. 
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observation interval (i.e., tf ) is simply taken to be the value of (simulated) 
time when a sufficient amount of data has been collected to generate a 

It does, however, have the computing time overhead
 of repeating the warm-up period for each of the replications. 

This approach resembles the experimentation and output analysis 

the output data, a point estimate and confidence interval can be obtained 
using Equation (6.1). In the discussion of Section 6.2.2 it was noted that 
increasing the number of simulation runs (i.e., replications) reduced the 
confidence interval half length (n) and increased the quality of the point 
estimate. This equally applies in the replication–deletion approach for a 
steady-state study. However, in a steady-state study, (n) can also be 
reduced by increasing the length of the simulation run, that is, by adjusting 
the right-hand boundary tf of the observation interval. Based on these 
observations the procedure for the replication–deletion method can be 
formulated as a straightforward extension of the earlier procedure 
presented in Section 6.2.2. It is as follows. 

1. 
well an initial reasonable value  for tf ,  and  an  initial  value  for n  that 
is not smaller than 20. 

2. Collect the n  observed  values y1,  y2, . . . , yn  for  the  random 
variables Yk , k = 1, 2, . . . , n,  that  result  from n  replicated 
simulation runs of the simulation program M that terminate at time 
tf.

3. From  tabulated  data  for  the  Student  t-distribution,  determine tn-1,a

where a = (1 – C)/2.
4. Compute )(ny  and (n) using Equation (6.1). 
5. If (n) < r )(ny (or (n)/ )(ny < r)  then  accept )(ny  as  the  estimate 

of µ and end the procedure, otherwise continue to Step 6. 

observations yn+1, yn+2, . . . , yn+ n  through  a further n  replications, 

The right boundary of the 

In  fact  a 
sequence of n
valid and meaningful  collection of output observations.  

simulation runs is executed to produce a set of n output 
values.  
 

An important feature of this method is that it naturally generates a 
set of IID values. 

previously outlined for a bounded horizon study (see Section 6.2). From 

A practical approach in the replication–deletion method is to  
determine  the  right boundary of the warm-period  (using methods 

output  set data generated prior to tw.  

Choose values for r, and for the  confidence level  parameter C,  and  as 

6. EITHER choose n no smaller than 3  and  collect  the  additional 

(Note that the output set,  from  which  yi 's  are obtained,  include only 
data collected after the end of the warm-up period)

such as the one described in Section 6.3.1) and to delete any 
 tw

replace n with n + n and repeat from Step 3
 OR increase the value of tf by at least 50% and repeat from Step 2.2

                                                                                                                          
2 In some environments (e.g., Java), it may be possible to save the state of the 

simulation program for each replication so that simulations runs can be 
continued from the previously specified tf.
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The batch means method is an entirely different approach that requires 
only a single (but potentially ‘long’) simulation run. An advantage of this 
approach is economy of computing time because the warm-up period only 
needs to be accommodated once. The end of the observation interval tf is 

autocorrelation of the output data must be dealt with in order to generate 

p0,0, p0,2, ...p0,m0 p1,0, p1,2, ...p1,m1 p2,0, p2,2, ...p2,m2 pn,0, pn,2, ...pn,mn

t0 t
tw tc1 tc2 tc(n-1) tf Observation 

Interval

PSOV Data 

Warm-up 

period
Time cell 1 Time cell 2 Time cell n•   •   •

•   •   •

Set 

Operator

y1

Set 

Operator

y2

Set 

Operator

yn

Output Data 

(DSOV) 

Batch 1 Batch 2 Batch n

•   •   •

the
 warm-up  period  is  divided  into n time cells as shown in Figure 6.6. The 

i

this  method  (and  also  other  methods  which  use a single
 simulation run), 

6.3.3  Experimentation and Data Analysis for the Port Project 

The Java program given in Figure 6.7 illustrates how the required 

Welch’s method). The major steps include: 

can be found in Law and Kelton [6.5]. 

obtain 

selected  to generate all the data necessary for analysis. However possible 

the necessary IID data. 

To generate a set of IID values, the observation interval beyond 

result is a 
set  of n batches. A DSOV output value is then computed for each  batch,
 providing a set of output values y  for i = 1, 2, . . .  
 be used to a point estimate of the mean value of the distribution of
 the output variable of interest, together with the corresponding  confidence
 interval. 

implemented.  The replication–deletion method  is being used to generate
 the  necessary output data with a warm-up period of five weeks (previously
 determined by 

FIGURE 6.6. Output values using method of batch means.

n. Equation (6.1) can then

experiments for the steady-state study of the Port project can be 

   Details  about 

One of the challenges of the batch means method is the proper 
selection of the length of the time cells. If the length is too short the

PSOV values that fall into a time cell is called a batch. The end 

iy  values may be correlated. Appropriate checks therefore need to be incorporated.
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1. The main method obtains  the  value  of tf  (the  right-hand  boundary  of 
the observation interval expressed in weeks) from the command line 
arguments (arg[0]). A simulation run termination time expressed in 
hours is assigned to endTime.

2.  A set of uncorrelated seeds is generated (to ensure independent 
replications) and saved into an array. The seeds are reused when 
carrying out the simulation runs for the alternative case of the port 
project (this implements the use of common random numbers 
described in Section 6.4).

3.  Two sets of simulation runs are carried out, one set where 
numBerths = 3 (base case), and one set where numBerths = 4 
(alternate case). This is implemented as a loop that increments 
numBerths.

4.   A simulation run consists of instantiating the PortVer1System  object 
that is initialised with the start time, number of berths, and random 
number generator seeds. The termination time of the 
PortVer1System object is first set to warmUpTime (using the 
setTimef method) and the simulation program executes for the 
warm-up period. The output set for the tanker total wait time is 
cleared. The termination time of the PortVer1System object is now 
set to endTime and continues execution until the end of the
observation interval.

5. The output data values are then computed by the ESOuputSet
methods,computeTrjDSOVs, and computePhiDSOVs. The values 
are then printed.

For each of the two cases (number of berths equals three and four), 
output data for each of the output variables (the average group size and 

f

of increasing values of n (number of replications). For each of the output 

(s(n)), and confidence interval half length ( (n)) values computed from the 
recorded data using Equation (6.1). The last column shows the ratio of 
(n)/ )(ny which gives a measure of the quality of the point estimate. As 

expected, increasing the number of runs (n) reduces the confidence interval 
half length (n). Increasing the simulation run length also improves the 
quality of the results. A comparison of the three and four berth options is 
undertaken in Section 6.4.1 using an appropriate statistical framework. 

tanker total  wait  time) using t  equal  to 10, 20, and 30 weeks are 
generated and analysed. In  each case results are obtained for a sequence 

variables, Table 6.5 shows point estimate ( y n) ), standard deviation 
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public static void main(String[] args)

{

    double week=(7*24); 

    double startTime=0.0;

    double warmUpTime=5*week;

    double endTime 

    int NUMRUNS=10000; 

    Seeds [] sds = new Seeds[NUMRUNS]; 

    // Find end time, tf, from command argument 

    if(args.length != 1) 

    { 

 System.out.println("Usage: PortV1Exp2 <endTime>"); 

 System.exit(1); 

    } 

    endTime=Double.valueOf(args[0])*week;

    // Lets get a set of uncorrelated seeds 

    RandomSeedGenerator rsg = new RandomSeedGenerator();

    for(int i=0 ; i<NUMRUNS ; i++) 

 sds[i] = new Seeds(rsg.nextSeed(),rsg.nextSeed(),

         rsg.nextSeed(),rsg.nextSeed(),

         rsg.nextSeed()); 

    // Simulation Runs 

    System.out.println("End Time = "+ args[0] + 

"("+endTime+")");

    // Run for 3 berths and then 4 berths 

    for(int numBerths=3 ; numBerths<=4 ; numBerths++) 

    { 

 System.out.println("Number of berths = "+numBerths); 

 for(int i=0 ; i<NUMRUNS ; i++) 

 { 

        PortVer1System portSys = new PortVer1System( 

          startTime,numBerths,sds[i]);

        portSys.setTimef(warmUpTime); // end of warmup 

        portSys.runSimulation();

  portSys.tankerTW.clearSet();  // clear output set 

        portSys.setTimef(endTime); // now run to tf 

        portSys.runSimulation();

        // compute DSOV 

        portSys.berthGrpN.computeTrjDSOVs(

         portSys.time0,portSys.timef);

        portSys.tankerTW.computePhiDSOVs();

        System.out.println(portSys.berthGrpN.mean+", "+ 

portSys.tankerTW.mean);

 } 

    } 

}

Example 1 of Section 4.3.1). 
FIGURE 6.7. Experiments  with the  Java port simulation program (corresponds to 
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TABLE

(a) Number of berths = 3.

t f :

n s(n) (n) s(n) (n) s(n) (n)

20 1.845 0.138 0.053 0.0290 1.858 0.072 0.028 0.0149 1.866 0.066 0.025 0.0137

30 1.820 0.139 0.043 0.0237 1.833 0.088 0.027 0.0149 1.842 0.078 0.024 0.0132

40 1.824 0.138 0.037 0.0201 1.833 0.095 0.025 0.0138 1.838 0.071 0.019 0.0103

60 1.827 0.147 0.032 0.0173 1.833 0.099 0.021 0.0117 1.828 0.077 0.017 0.0090

80 1.828 0.138 0.026 0.0141 1.834 0.102 0.019 0.0103 1.833 0.076 0.014 0.0077

100 1.823 0.138 0.023 0.0126 1.834 0.101 0.017 0.0091 1.830 0.078 0.013 0.0071

1000 1.834 0.130 0.007 0.0037 1.833 0.094 0.005 0.0027 1.833 0.077 0.004 0.0022

10000 1.826 0.132 0.002 0.0012 1.832 0.095 0.002 0.0009 1.833 0.078 0.001 0.0007

20 7.144 2.387 0.923 0.1292 7.196 1.937 0.749 0.1041 7.256 1.543 0.597 0.0822

30 6.815 2.432 0.754 0.1107 7.042 1.695 0.526 0.0747 7.268 1.394 0.432 0.0595

40 6.703 2.482 0.661 0.0987 7.099 2.020 0.538 0.0758 7.320 1.487 0.396 0.0541

60 7.958 5.733 1.237 0.1554 7.451 2.626 0.567 0.0760 7.324 1.727 0.373 0.0509

80 7.857 5.243 0.976 0.1242 7.454 2.438 0.454 0.0609 7.410 1.762 0.328 0.0442

100 7.844 5.148 0.855 0.1090 7.665 2.498 0.415 0.0541 7.456 1.781 0.296 0.0397

1000 7.613 4.518 0.235 0.0309 7.682 2.817 0.147 0.0191 7.700 2.299 0.120 0.0155

10000 7.449 4.510 0.074 0.0100 7.686 2.926 0.048 0.0063 7.729 2.293 0.038 0.0049

10 weeks 20 weeks 30 weeks

Berth Group Size

Tanker Total Waiting Time

(n)y (n)y (n)y
(n)y

(n)
(n)y

(n)
(n)y

(n)

(b) Number of berths = 4. 

t f :

n s(n) (n) s(n) (n) s(n) (n)

20 1.859 0.149 0.058 0.0310 1.872 0.075 0.029 0.0154 1.877 0.068 0.026 0.0140

30 1.835 0.146 0.045 0.0247 1.847 0.090 0.028 0.0152 1.854 0.079 0.025 0.0132

40 1.839 0.145 0.039 0.0210 1.847 0.096 0.025 0.0138 1.850 0.071 0.019 0.0103

60 1.844 0.155 0.033 0.0181 1.846 0.101 0.022 0.0118 1.840 0.078 0.017 0.0092

80 1.844 0.146 0.027 0.0147 1.847 0.105 0.019 0.0105 1.845 0.077 0.014 0.0078

100 1.839 0.144 0.024 0.0130 1.847 0.104 0.017 0.0094 1.841 0.080 0.013 0.0072

1000 1.850 0.135 0.007 0.0038 1.846 0.097 0.005 0.0027 1.845 0.079 0.004 0.0022

10000 1.842 0.136 0.002 0.0012 1.845 0.098 0.002 0.0009 1.846 0.080 0.001 0.0007

20 2.533 1.045 0.404 0.1595 2.534 0.641 0.248 0.098 2.533 0.422 0.163 0.0644

30 2.488 0.938 0.291 0.1170 2.556 0.569 0.177 0.069 2.598 0.450 0.140 0.0537

40 2.452 0.885 0.236 0.0962 2.554 0.564 0.150 0.059 2.582 0.422 0.112 0.0435

60 2.769 1.562 0.337 0.1217 2.601 0.705 0.152 0.059 2.547 0.487 0.105 0.0412

80 2.709 1.432 0.267 0.0984 2.582 0.691 0.129 0.050 2.549 0.499 0.093 0.0364

100 2.711 1.379 0.229 0.0845 2.624 0.683 0.113 0.043 2.552 0.496 0.082 0.0323

1000 2.539 1.114 0.058 0.0228 2.557 0.639 0.033 0.013 2.559 0.508 0.026 0.0103

10000 2.501 1.094 0.018 0.0072 2.557 0.662 0.011 0.004 2.564 0.512 0.008 0.0033

Berth Group Size

Tanker Total Waiting Time

10 weeks 20 weeks 30 weeks

(n)y(n)y(n)y (n)y
(n)

(n)y
(n)

(n)y
(n)

6.4 Comparing Alternatives 

A frequently occurring requirement among the goals of a modelling and 
simulation project is the evaluation of several alternate system designs. For 
example, what reduction in maximum patient waiting time could be 
expected in the emergency admitting area of a large hospital if an 
additional orthopaedic specialist were hired or what might be the impact 
on traffic flow in the downtown core of a large city if a network of one-
way streets were implemented? There can be a large number of such 

 6.5. Results from  experiments with  the Java port simulation program of 
Figure 6.7.
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design alternatives that need to be evaluated but we first examine the case 
where there are only two.

In principle the problem solution is straightforward. Develop a 
simulation program for each of the scenarios (alternatives), obtain a value 
for some common performance measure applied to each scenario (e.g., a 

There  is,  however,  a  serious  complication  that
 emerges,  namely,  what assurance  is there that any observed difference
 between  the performance measure  values  is a consequence of  the design
 difference  being  studied  and not simply a consequence of the inherent
 random behaviour within the model?

A number of different approaches have emerged for dealing with this 
problem and comprehensive discussions can be found in the literature 

straightforward is called the paired-t confidence interval method The 
objective here is to first establish a confidence interval for an estimate of 
the mean of a random variable that is the difference between the output 
variables associated with each of the scenarios. A decision about relative 
superiority is then based on the position of the confidence interval relative 
to zero. Some details are provided below. 

6.4.1  Comparing Two Alternatives 

Suppose that Y is the output variable to be used for the evaluation and let’s 
assume that we seek as large a value as possible for this variable. The 
simulation program for each of the design alternatives is replicated n times 
with appropriate care taken to ensure that in each case the n observations 
of Y can be assumed to be independent (i.e., by proper management of the 
random number streams that ‘drive’ the simulation models). Suppose that 
y1k is the value of Y obtained for case 1 on the kth replication and suppose 
that y2k is the value for case 2 on the kth replication. Let: 
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mean value estimate for  the distribution  of some DSOV), and compare
 the values  obtained. 

(e.g., Banks et al. [6.1] and Goldsman and Nelson [6.2]). One of the most 
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where tn-1,a is a value from the Student t-distribution  (see  Table  A1.4)  that 
corresponds to (n – 1) degrees of freedom and a = (1 – C)/2 with C the 
confidence level parameter. Here )(nd is  a  point  estimate  of  the  mean of 

the differences and )(2 ns is  the sample  variance.  (The similarity of  these 
results with those given in Equation (6.1)  is  worth noting.)  The associated 

confidence interval is ])([)( ndnCI .
There are three possible outcomes based on CI(n); namely,

a)  If CI(n) lies entirely to the right of zero then the result of case 2 
exceeds the result of case 1 with a level of confidence given by 
100C%.

b)  If CI(n) lies entirely to the left of zero then the result of case 1 
exceeds the result of case 2 with a level of confidence given by 
100C%.

c)  If CI(n) includes zero then at the level of confidence, 100C%.,
there is no meaningful difference between the two cases. 

The procedure outlined above is best carried out in conjunction with a 
technique called common random numbers (CRN). When undertaking the 
comparison of the data that flow from the two simulation programs that 
embody the two design alternatives, there is reason to be concerned about 
the extent to which any observed difference is a genuine reflection of the 
design alternatives or is simply the result of a lack of symmetry in the 
random phenomena that take place within the respective simulation 
models.

The common random number technique seeks to establish this 
symmetry and thus enhance the reliability of the conclusions. The 
application of the technique corresponds to endeavouring to ensure that, 
insofar as possible, the random phenomena within the two simulation 
programs are co-ordinated; for example, comparable entities flowing in the 
two models are subjected to the same sequence of delays. In principle, this 
can be achieved by the strict management of the random variate generation 
procedures within the two programs. This coordination is straightforward 
for input data models. The coordination task can also be easily achieved 
with all data models when the simulation model is relatively simple. 
However, except for input data models, the coordination task can become 
increasingly more difficult as the simulation model complexity increases. 
Often the design differences themselves may inhibit a rigorous application 
of the approach. 

The common random number procedure outlined above has the effect of 
establishing correlation between the output data generated in 
corresponding simulation runs with the two alternative designs. This, in 
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turn, has a quantitative manifestation; more specifically, the procedure, 
when operating as intended, should yield the inequality: 

)()()( 2
2

2
1

2 nsnsns  , (6.4)

where )(2
1 ns and )(2

2 ns are the variances for the data obtained for Case 1 

We return now to our experiments with the port project as outlined in 
Section 6.3.3. For the two cases where the number of berths is 3 and 
4, Table 6.6 shows the output data for each of the output variables (the 
average group size and tanker total wait time) from a sequence of 
experiments with tf = 20 weeks and n = 30. The difference column is 
obtained as (numBerths=4) – (numBerths=3). The comparison of the two 
alternatives is carried out using Equation (6.3) and the results are 
provided at the bottom of Table 6.6 (CI min and CI max are the boundaries 

follows.

1.   It is clear that increasing the number of berths from three to four does 

2.  Although the confidence interval for the berth group size is to the 
right of zero, the point estimate of the difference is so small 
relative to the individual point estimates we are obliged to 
conclude that increasing the berth group size has no meaningful effect

 on this output variable. This is somewhat counterintuitive but is a
 consequence 
 tug’s cycle time (time to deberth and berth a tanker), and the
 tanker loading times. 

measure that would
 be interesting is the percentage of time that all available berths are
 occupied. The interested reader is encouraged to experiment with
 the simulation program by exploring the effects of changing these

Table 6.7 shows the data obtained from equivalent experiments which 
do not use common random numbers (CRN) for the two cases of interest, 
that is, numBerths=3 and numBerths=4. This was achieved by not using 
the same seeds for the random number generators that implement the 
data modules in the experiments. Note that the confidence interval half 
length (n) increases for both output variables when compared to the 

and Case 2, respectively and s (n) is the value obtained from Equation (6.3). 2

of  the confidence interval). Some interpretation of the data is as 

decrease the mean tanker total wait time (by almost 4.5 hours).

For example, experimentation with the model
 has shown that when the loading times are increased, the average 
berth group size does increase. An alternate 

 various  times  in  the  simulation

 results in Table 6.6. Note also that it can be shown that the Tanker Total 
Wait Time  data  in Table 6.7  is  not  consistent with  the inequality of 
Equation (6.4).

of the relative values of tanker arrival rate, the

 model  (The  PortVer 1  simulation
model is available from the textbook Web site). 
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TABLE

n = 30). 

Run numBerths=3 numBerths=4 Difference numBerths=3 numBerths=4 Difference

1 1.721 1.729 0.008 5.981 2.182 -3.799

2 1.847 1.862 0.014 7.433 3.182 -4.251

3 1.911 1.920 0.008 7.594 2.758 -4.836

4 1.876 1.888 0.011 6.299 2.039 -4.260

5 1.897 1.917 0.020 7.177 2.483 -4.694

6 1.833 1.843 0.011 4.589 1.679 -2.910

7 1.866 1.888 0.023 8.234 3.411 -4.823

8 1.864 1.877 0.013 9.310 2.995 -6.315

9 1.790 1.796 0.006 6.398 2.580 -3.819

10 1.949 1.969 0.020 7.131 2.403 -4.728

11 1.952 1.956 0.003 9.387 2.950 -6.438

12 1.830 1.846 0.016 7.776 2.548 -5.229

13 1.720 1.743 0.023 4.764 1.719 -3.046

14 2.004 2.044 0.039 12.640 4.030 -8.610

15 1.811 1.819 0.008 4.678 1.623 -3.055

16 1.834 1.852 0.018 6.126 2.446 -3.680

17 1.932 1.941 0.009 9.013 3.127 -5.887

18 1.836 1.841 0.005 5.782 1.731 -4.050

19 1.828 1.833 0.004 5.795 2.017 -3.778

20 1.856 1.870 0.014 7.816 2.782 -5.035

21 1.921 1.924 0.003 7.344 2.853 -4.490

22 1.744 1.754 0.011 6.092 2.491 -3.601

23 1.636 1.658 0.023 6.183 2.659 -3.524

24 1.823 1.856 0.032 6.797 3.126 -3.672

25 1.747 1.746 0.000 6.619 2.214 -4.405

26 1.843 1.848 0.005 7.074 2.422 -4.652

27 1.668 1.683 0.015 4.597 1.801 -2.795

28 1.699 1.715 0.015 7.429 2.920 -4.509

29 1.928 1.964 0.036 8.780 3.093 -5.686

30 1.828 1.833 0.005 6.410 2.417 -3.993

0.014 -4.486

s(n) 0.010 1.221

(n) 0.003 0.379

CI Min 0.011 -4.864

CI Max 0.017 -4.107

Berth Group Size Tanker Total Wait Time

(n)y

and 

-

 6.6. Comparing alternative cases in the port project of Example 1 (with CRN 
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TABLE
and n = 30).

Run numBerths=3 numBerths=4 Difference numBerths=3 numBerths=4 Difference

1 1.721 1.834 0.113 5.981 2.943 -3.038

2 1.847 1.881 0.033 7.433 2.591 -4.843

3 1.911 1.887 -0.024 7.594 2.507 -5.087

4 1.876 1.881 0.005 6.299 3.278 -3.021

5 1.897 1.862 -0.035 7.177 2.107 -5.070

6 1.833 1.835 0.002 4.589 3.588 -1.001

7 1.866 1.868 0.002 8.234 2.224 -6.009

8 1.864 1.923 0.059 9.310 2.527 -6.783

9 1.790 1.838 0.048 6.398 1.828 -4.570

10 1.949 1.811 -0.138 7.131 1.895 -5.236

11 1.952 1.905 -0.048 9.387 1.418 -7.969

12 1.830 1.876 0.047 7.776 3.003 -4.774

13 1.720 1.829 0.109 4.764 2.183 -2.581

14 2.004 1.879 -0.126 12.640 2.633 -10.007

15 1.811 1.822 0.011 4.678 2.741 -1.937

16 1.834 1.905 0.071 6.126 4.414 -1.712

17 1.932 1.925 -0.008 9.013 4.340 -4.673

18 1.836 1.854 0.018 5.782 1.658 -4.124

19 1.828 1.865 0.037 5.795 2.158 -3.637

20 1.856 1.878 0.022 7.816 2.346 -5.470

21 1.921 1.844 -0.077 7.344 2.360 -4.984

22 1.744 1.937 0.194 6.092 3.644 -2.448

23 1.636 1.709 0.073 6.183 2.934 -3.249

24 1.823 1.870 0.047 6.797 2.117 -4.680

25 1.747 1.712 -0.034 6.619 2.200 -4.419

26 1.843 1.868 0.026 7.074 2.472 -4.602

27 1.668 1.686 0.017 4.597 2.799 -1.798

28 1.699 1.769 0.070 7.429 1.895 -5.533

29 1.928 1.878 -0.050 8.780 1.786 -6.994

30 1.828 1.909 0.081 6.410 4.787 -1.623

0.018 -4.396

s(n) 0.069 2.003

(n) 0.021 0.621

CI Min -0.003 -5.017

CI Max 0.039 -3.775

Berth Group Size Tanker Total Wait Time

(n)y

6.4.2  Comparing More than Two Alternatives 

The paired-t confidence interval method described above can be extended 
to the case where multiple comparisons need to be carried out. The basis 
for carrying out this extension is provided by the Bonferroni inequality 
(sometimes called the Boole inequality). It states that: 

 6.7. Comparing alternative cases in the port project of Example 1 (without 
CRN  

-
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In our context, the Ak can be interpreted as the event (in a probability 
context) that the kth confidence interval contains the kth mean in a 
collection of K (pairwise) comparisons, The Bonferroni inequality, in 
effect, places constraints on the individual comparisons in order to achieve 
an overall result that has a prescribed level of confidence, 100C%. In other 
words with 100C% confidence, the mean differences all fall into their 
respective confidence intervals. The (simplified) result that flows from the 
Bonferonni inequality is that each of the K comparisons should be carried 
out with a confidence level parameter value of: 

(6.5)

Note that the result given in Equation (6.5) is overly restrictive because it 
has imposed the unnecessary (but simplifying) requirement that the 
confidence level parameter of all constituent comparisons be equal. 

The following is a typical scenario. There exists a ‘base case’ which 
normally corresponds to the current status of the SUI. The project goals 
introduce M alternate designs together with the requirement to identify the 
best of the alternate designs by comparing each alternative to the base 
case. Thus K = M comparisons need to be made. If an overall confidence 
level of 100C% is stipulated then the K individual comparisons have to be 
carried out with a confidence level parameter of CK as given in Equation 
(6.5).

It may, on the other hand, be stipulated in the project goals that the M
alternative designs not only be compared to the base case but also be 
pairwise compared to each other. In this case, there is a requirement for K
= M(M + 1)/2 comparisons. The number of comparisons can easily rise 
quickly and the reliability of the procedure deteriorate. In addition, of 
course, the computational overhead can become overwhelming. 

Some illustrative results obtained using the multiple alternatives 

Kojo’s Kitchen project. We consider a base case (Case 1) which 
corresponds to the two employees working over the entire business day 
(10:00 AM – 9:00 PM) and three alternative employee scheduling options 
(Cases 2, 3, 4). These options allocate different numbers of employees to 
various segments of the day. The employee scheduling schemes are 

total number of employee-hours associated with each option. This is 
relevant in the ultimate selection decision because it represents the ‘cost’ 

1
1K

C
C

K
.

procedure outlined above are given in Table 6.9. The results relate to the 

summarised in Table 6.8. The rightmost column of this Table provides the 
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of the option. The output variable of interest continues to be the percentage of 
customers who wait more than five minutes before receiving service.

TABLE

Slow Busy Slow Busy Slow Emp-
(10:00am-

11:30am)

(11:30am-

1:30pm)

(1:30pm-

5:00pm)

(5:00pm-

7:00pm)

(7:00pm-

9:00pm)
Hours

Case 1 (Base Case) 2 2 2 2 2 22

Case 2 2 3 2 3 2 26

Case 3 1 3 1 3 1 19

Case 4 1 3 2 3 1 22.5

results shown for Diff21 are obtained by subtracting the results of the base 
case (Case 1) from Case 2 and applying Equation (6.3), and similarly for 
Diff31 and Diff41. These results were obtained using the Java simulation 
program previously discussed in Section 6.2.3. In each case the results are 
based on data from 100 replications (n = 100) and use of a confidence 
level parameter value of Ck = 0.968 in the determination of the confidence 
interval for the individual comparisons. This gives a value of C = 0.904 
using Equation (6.5), that is, a confidence of 90.4% in the conclusions 
from the comparison. Table 6.9 suggests that the scheduling alternative of 
Case 2 provides the best improvement over the base case. (Unfortunately it 
is also the most expensive! Note however that scheduling in Case 4 
provides a significant improvement at very little additional cost). 

Comparison

Point

Estimate 

(n) s(n) CI Min CI Max / (n)

Diff21 -0.315 0.011 0.024 -0.340 -0.291 -0.076

Diff31 -0.127 0.013 0.028 -0.155 -0.099 -0.220

Diff41 -0.243 0.012 0.025 -0.268 -0.218 -0.105

6.5 Exercises and Projects

6.1  Use the program developed in Problem 5.1 to carry out experiments 
that provide the values required for the graphs that are stipulated in the 
goals of the project outlined in Problem 4.1. Write a short report that 

 6.8. Multiple scheduling alternatives for Kojo’s Kitchen. 

TABLE 6.9. Results for multiple scheduling alternatives (Kojo's Kitchen). 

Table 6.9 provides a summary of the each of the three comparisons. The 
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outlines the problem, the goals of the modeling and simulation project, 
and the conclusions obtained from the study. 

6.2  Use the program developed in Problem 5.2 to carry out experiments 
that provide the values required for the graphs that are stipulated in the 
goals of the project outlined in Problem 4.2. Write a short report that 
outlines the problem, the goals of the modeling and simulation project, 
and the conclusions obtained from the study. 

6.3  Use the program developed in Problem 5.3 to carry out experiments 
that provide values for the proposed performance measures referred to 
in part (a) of Problem 4.3. Write a short report that outlines the 
problem, the goals of the modeling and simulation project, and the 
conclusions obtained from the study. 

6.4  Use the program developed in Problem 5.5 to carry out experiments 
that provide values for the proposed performance measures referred to 
in part (a) of Problem 4.3. Write a short report that outlines the 
problem, the goals of the modeling and simulation project, and the 
conclusions obtained from the study. 

6.5  Use the program developed in Problem 5.7 to carry out experiments 
that provide values for the proposed performance measures referred to 
in part (b) of Problem 4.4. Write a short report that outlines the 
problem, the goals of the modeling and simulation project, and the 
conclusions obtained from the study. 

6.6  Use the program developed in Problem 5.8 to carry out experiments to 
evaluate the effects of balking introduced in Problem 4.5. Write a short 
report that outlines the problem, the goals of the modeling and 
simulation project, and the conclusions obtained from the study. 
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