Skip to main content

Aβ in Mitochondria—One Piece in the Alzheimer’s Disease Puzzle

  • Chapter
  • First Online:
Studies on Alzheimer's Disease
  • 2133 Accesses

Abstract

Although great advances have been made in our understanding of the neurodegenerative process in Alzheimer’s disease (AD), the complete picture has not emerged and there are still pieces missing. One attractive hypothesis is that mitochondrial failure is a cause of synapse loss and cognitive impairment in AD. ATP generation by mitochondria is crucial for proper synaptic function and therefore neurons are highly sensitive to mitochondrial damage potentially leading to synapse loss and cognitive dysfunction. Several evidences indicate that mitochondria are indeed damaged and dysfunctional in the AD brain; these include mitochondrial accumulation of amyloid β-peptide (Aβ), impaired brain glucose metabolism, impaired mitochondrial fusion/fission, and increased generation of reactive oxygen species (ROS). In this chapter we will focus on the role of Aβ in mitochondria and discuss mitochondrial uptake mechanisms and interactions with mitochondrial proteins. Several evidences point towards a central role of Aβ initiating mitochondrial damage and generation of ROS in turn leading to synaptic and neuronal degeneration. Therefore, it would be of high importance to develop drugs that maintain mitochondrial integrity and prevent mitochondrial failure otherwise leading neuronal dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow RH, Khan SM. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses. 2004;63:8–20.

    Article  PubMed  CAS  Google Scholar 

  2. Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008;192:106–13.

    Article  PubMed  CAS  Google Scholar 

  3. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, et al. Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011;31:6627–38.

    Article  PubMed  CAS  Google Scholar 

  4. Crouch PJ, Blake R, Duce JA, Ciccotosto GD, Li QX, et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci. 2005;25:672–9.

    Article  PubMed  CAS  Google Scholar 

  5. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005;19:2040–1.

    PubMed  CAS  Google Scholar 

  6. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, et al. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15:1437–49.

    Article  PubMed  CAS  Google Scholar 

  7. Hansson Petersen CA, Alikhani N, Behbahani H, Wiehager B, Pavlov PF, et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A. 2008;105:13145–50.

    Article  PubMed  CAS  Google Scholar 

  8. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, et al. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A. 2010;107:18670–5.

    Article  PubMed  CAS  Google Scholar 

  9. Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, et al. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. J Alzheimers Dis. 2010;20 Suppl 2:S535–50.

    PubMed  Google Scholar 

  10. Bergmans BA, De Strooper B. Gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol. 2010;9:215–26.

    Article  PubMed  CAS  Google Scholar 

  11. Benilova I, Karran E, De Strooper B. The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15:349–57.

    Article  PubMed  CAS  Google Scholar 

  12. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG. Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol. 2003;161:41–54.

    Article  PubMed  CAS  Google Scholar 

  13. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, et al. Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem. 2004;279:51654–60.

    Article  PubMed  CAS  Google Scholar 

  14. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26:9057–68.

    Article  PubMed  CAS  Google Scholar 

  15. Pavlov PF, Wiehager B, Sakai J, Frykman S, Behbahani H, et al. Mitochondrial gamma-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J. 2011;25:78–88.

    Article  PubMed  CAS  Google Scholar 

  16. Muresan V, Varvel NH, Lamb BT, Muresan Z. The cleavage products of amyloid-beta precursor protein are sorted to distinct carrier vesicles that are independently transported within neurites. J Neurosci. 2009;29:3565–78.

    Article  PubMed  CAS  Google Scholar 

  17. Area-Gomez E, de Groof AJ, Boldogh I, Bird TD, Gibson GE, et al. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am J Pathol. 2009;175:1810–6.

    Article  PubMed  CAS  Google Scholar 

  18. Schon EA, Area-Gomez E. Is Alzheimer’s disease a disorder of mitochondria-associated membranes? J Alzheimers Dis. 2010;20 Suppl 2:S281–92.

    PubMed  Google Scholar 

  19. Singh P, Suman S, Chandna S, Das TK. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer’s disease. Bioinformation. 2009;3:440–5.

    Article  PubMed  Google Scholar 

  20. Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, et al. A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J. 2010;10(5):375–84.

    Article  PubMed  CAS  Google Scholar 

  21. Hedskog L, Brohede J, Wiehager B, Pinho CM, Revathikumar P, Lilius L, et al. Biochemical studies of poly-T variants in the Alzheimer’s disease associated TOMM40 gene. J Alzheimers Dis. 2012;31:527–36.

    Google Scholar 

  22. Pagani L, Eckert A. Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis. 2011;2011:925050.

    Article  PubMed  Google Scholar 

  23. Maurer I, Zierz S, Moller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging. 2000;21:455–62.

    Article  PubMed  CAS  Google Scholar 

  24. Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM. Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology. 2001;57:260–4.

    Article  PubMed  CAS  Google Scholar 

  25. Cottrell DA, Borthwick GM, Johnson MA, Ince PG, Turnbull DM. The role of cytochrome c oxidase deficient hippocampal neurones in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2002;28:390–6.

    Article  PubMed  CAS  Google Scholar 

  26. Cardoso SM, Santana I, Swerdlow RH, Oliveira CR. Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. J Neurochem. 2004;89:1417–26.

    Article  PubMed  CAS  Google Scholar 

  27. Cardoso SM, Proenca MT, Santos S, Santana I, Oliveira CR. Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging. 2004;25:105–10.

    Article  PubMed  CAS  Google Scholar 

  28. Canevari L, Clark JB, Bates TE. beta-Amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 1999;457:131–4.

    Article  PubMed  CAS  Google Scholar 

  29. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem. 2002;80:91–100.

    Article  PubMed  CAS  Google Scholar 

  30. Parks JK, Smith TS, Trimmer PA, Bennett Jr JP, Parker Jr WD. Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem. 2001;76:1050–6.

    Article  PubMed  CAS  Google Scholar 

  31. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, et al. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2009;106:14670–5.

    Article  PubMed  CAS  Google Scholar 

  32. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A. 2009;106:20057–62.

    PubMed  CAS  Google Scholar 

  33. Miura T, Tanno M. The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovasc Res. 2012;94:181–9.

    Article  PubMed  CAS  Google Scholar 

  34. Du H, Guo L, Fang F, Chen D, Sosunov AA, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med. 2008;14:1097–105.

    Article  PubMed  CAS  Google Scholar 

  35. Du H, Guo L, Zhang W, Rydzewska M, Yan S. Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging. 2011;32(3):398–406.

    Article  PubMed  CAS  Google Scholar 

  36. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304:448–52.

    Article  PubMed  CAS  Google Scholar 

  37. Takuma K, Yao J, Huang J, Xu H, Chen X, et al. ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J. 2005;19:597–8.

    PubMed  CAS  Google Scholar 

  38. Yan Y, Liu Y, Sorci M, Belfort G, Lustbader JW, et al. Surface plasmon resonance and nuclear magnetic resonance studies of ABAD-Abeta interaction. Biochemistry. 2007;46:1724–31.

    Article  PubMed  CAS  Google Scholar 

  39. Yao J, Du H, Yan S, Fang F, Wang C, et al. Inhibition of amyloid-beta (Abeta) peptide-binding alcohol dehydrogenase-Abeta interaction reduces Abeta accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31:2313–20.

    Article  PubMed  CAS  Google Scholar 

  40. Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K, Johnson KA, Eneqvist T, Tjernberg L, Ankarcrona M, Glaser E. Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem. 2006;281:29096–104.

    Article  PubMed  CAS  Google Scholar 

  41. Stahl A, Moberg P, Ytterberg J, Panfilov O, Brockenhuus Von Lowenhielm H, et al. Isolation and identification of a novel mitochondrial metalloprotease (PreP) that degrades targeting presequences in plants. J Biol Chem. 2002;277:41931–9.

    Article  PubMed  CAS  Google Scholar 

  42. Moberg P, Stahl A, Bhushan S, Wright SJ, Eriksson A, et al. Characterization of a novel zinc metalloprotease involved in degrading targeting peptides in mitochondria and chloroplasts. Plant J. 2003;36:616–28.

    Article  PubMed  CAS  Google Scholar 

  43. Stahl A, Nilsson S, Lundberg P, Bhushan S, Biverstahl H, et al. Two novel targeting peptide degrading proteases, PrePs, in mitochondria and chloroplasts, so similar and still different. J Mol Biol. 2005;349:847–60.

    Article  PubMed  CAS  Google Scholar 

  44. Kurochkin IV. Insulin-degrading enzyme: embarking on amyloid destruction. Trends Biochem Sci. 2001;26:421–5.

    Article  PubMed  CAS  Google Scholar 

  45. Selkoe DJ. Clearing the brain’s amyloid cobwebs. Neuron. 2001;32:177–80.

    Article  PubMed  CAS  Google Scholar 

  46. Tanzi RE, Moir RD, Wagner SL. Clearance of Alzheimer’s Abeta peptide: the many roads to perdition. Neuron. 2004;43:605–8.

    PubMed  CAS  Google Scholar 

  47. Alikhani N, Guo L, Yan S, Du H, Pinho CM, et al. Decreased proteolytic activity of the mitochondrial amyloid-beta degrading enzyme, PreP peptidasome, in Alzheimer’s disease brain mitochondria. J Alzheimers Dis. 2011;27:75–87.

    PubMed  CAS  Google Scholar 

  48. Shinall H, Song ES, Hersh LB. Susceptibility of amyloid beta peptide degrading enzymes to oxidative damage: a potential Alzheimer’s disease spiral. Biochemistry. 2005;44:15345–50.

    Article  PubMed  CAS  Google Scholar 

  49. Leuner K, Schutt T, Kurz C, Eckert SH, Schiller C, et al. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid Beta formation. Antioxid Redox Signal. 2012;16:1421–33.

    Article  PubMed  CAS  Google Scholar 

  50. McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2011;31:15703–15.

    Article  PubMed  CAS  Google Scholar 

  51. Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord. 2010;25:1670–4.

    Article  PubMed  Google Scholar 

  52. Ankarcrona M, Mangialasche F, Winblad B. Rethinking Alzheimer’s disease therapy: are mitochondria the key? J Alzheimers Dis. 2010;20 Suppl 2:S579–90.

    PubMed  Google Scholar 

  53. Matveeva IA. Action of dimebon on histamine receptors. Farmakol Toksikol. 1983;46:27–9.

    PubMed  CAS  Google Scholar 

  54. Lermontova NN, Lukoyanov NV, Serkova TP, Lukoyanova EA, Bachurin SO. Dimebon improves learning in animals with experimental Alzheimer’s disease. Bull Exp Biol Med. 2000;129:544–6.

    Article  PubMed  CAS  Google Scholar 

  55. Bachurin S, Bukatina E, Lermontova N, Tkachenko S, Afanasiev A, et al. Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer. Ann N Y Acad Sci. 2001;939:425–35.

    Article  PubMed  CAS  Google Scholar 

  56. Wu J, Li Q, Bezprozvanny I. Evaluation of Dimebon in cellular model of Huntington’s disease. Mol Neurodegener. 2008;3:15.

    Article  PubMed  Google Scholar 

  57. Doody RS, Gavrilova SI, Sano M, Thomas RG, Aisen PS, et al. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind, placebo-controlled study. Lancet. 2008;372:207–15.

    Article  PubMed  CAS  Google Scholar 

  58. www.clinicaltrial.gov Accessed 17 May 2012.

  59. Schaffhauser H, Mathiasen JR, Dicamillo A, Huffman MJ, Lu LD, et al. Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem Pharmacol. 2009;78:1035–42.

    Article  PubMed  CAS  Google Scholar 

  60. Grigorev VV, Dranyi OA, Bachurin SO. Comparative study of action mechanisms of dimebon and memantine on AMPA- and NMDA-subtypes glutamate receptors in rat cerebral neurons. Bull Exp Biol Med. 2003;136:474–7.

    Article  PubMed  CAS  Google Scholar 

  61. Lermontova NN, Redkozubov AE, Shevtsova EF, Serkova TP, Kireeva EG, et al. Dimebon and tacrine inhibit neurotoxic action of beta-amyloid in culture and block l-type Ca(2+) channels. Bull Exp Biol Med. 2001;132:1079–83.

    Article  PubMed  CAS  Google Scholar 

  62. Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO. Mitochondria as a target for neurotoxins and neuroprotective agents. Ann N Y Acad Sci. 2003;993:334–44. discussion 345–339.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang S, Hedskog L, Petersen CA, Winblad B, Ankarcrona M. Dimebon (latrepirdine) enhances mitochondrial function and protects neuronal cells from death. J Alzheimers Dis. 2010;21:389–402.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ankarcrona Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ankarcrona, M. (2013). Aβ in Mitochondria—One Piece in the Alzheimer’s Disease Puzzle. In: Praticὸ, D., Mecocci, P. (eds) Studies on Alzheimer's Disease. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-598-9_5

Download citation

Publish with us

Policies and ethics