Skip to main content

The Role of Colonic Flora in Infants

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

At birth, the intestine is sterile and colonic function of the human infant is immature. The development of the colonic function (i.e., water absorption and carbohydrate fermentation) is related in part to that of the bacterial flora. The role of the bacterial flora (intestinal microbiota) has evolved in recent years and in addition to the metabolic functions that was known to perform, an important inmunoregulatory role has been established and the human microbiome project has been launched with the goal of identifying and characterizing the microorganisms which are found in association with both healthy and diseased humans. Modulation of the fecal flora by probiotics is the topic of active investigation. The role of the flora in health and disease is no longer a hypothesis. Characteristics of the flora have been implicated in as causing or perpetuating acute and chronic illnesses that may extend into adulthood. Products of carbohydrate fermentation have also been seen to play a regulatory role in the life cycle of the colonocyte, the epithelial cell of the colon. Both in infants and adults, a variable proportion of dietary carbohydrate is not absorbed in the small bowel and arrives in the colon where it undergoes bacterial fermentation. The products of this fermentation are short-chain fatty acids (SCFAs), principally acetate, propionate, and butyrate [1], together with gases such as CO2, hydrogen (H2), and methane (CH4). A fraction of these products are absorbed through the colonic mucosa into the circulatory system; butyrate is utilized by the epithelial cells of the colon [2]; the rest is expelled through the anus as stools or flatus [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cummings H, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. Parenter Enteral Nutr. 1997;21:357–65.

    Article  CAS  Google Scholar 

  2. Roediger WE. Oxidative and synthetic functions of n-Butyrate in colonocytes. Dis Colon Rectum. 1992;35(5):511–2.

    Article  PubMed  CAS  Google Scholar 

  3. Levitt MD, Engel RR. Intestinal gas. Adv Intern Med. 1975;20:151–65.

    PubMed  CAS  Google Scholar 

  4. Palme C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):177.

    Article  Google Scholar 

  5. Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl. 2003;9:48–55.

    Google Scholar 

  6. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30:61–7.

    Article  PubMed  CAS  Google Scholar 

  7. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–21.

    Article  PubMed  Google Scholar 

  8. Sandin A, Björkstén B, Böttcher MF, Englund E, Jenmalm MC, Bråbäck L. High salivary secretory IgA antibody levels are associated with less late-onset wheezing in IgE-sensitized infants. Pediatr Allergy Immunol. 2011;22:477–81.

    Article  PubMed  Google Scholar 

  9. Sjögren YM, Tomicic S, Lundberg A, Böttcher MF, Björkstén B, Sverremark-Ekström E, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy. 2009;39:1842–51.

    Article  PubMed  Google Scholar 

  10. Sjögren YM, Jenmalm MC, Böttcher MF, Björkstén B, Sverremark-Ekström E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy. 2009;39:518–26.

    Article  PubMed  Google Scholar 

  11. Eggesbø M, Botten G, Stigum H, Nafstad P, Magnus P. Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol. 2003;112:420–6.

    Article  PubMed  Google Scholar 

  12. Laubereau B, Filipiak-Pittroff B, von Berg A, Grübl A, Reinhardt D, Wichmann HE, et al. Caesarean section and gastrointestinal symptoms, atopic dermatitis, and sensitisation during the first year of life. Arch Dis Child. 2004;89:993–7.

    Article  PubMed  CAS  Google Scholar 

  13. Koplin J, Allen K, Gurrin L, Osborne N, Tang ML, Dharmage S. Is caesarean delivery associated with sensitization to food allergens and IgE-mediated food allergy: a systematic review. Pediatr Allergy Immunol. 2008;19:682–7.

    Article  PubMed  Google Scholar 

  14. Sánchez-Valverde F, Gil F, Martinez D, Fernandez B, Aznal E, Oscoz M, et al. The impact of caesarean delivery and type of feeding on cow’s milk allergy in infants and subsequent development of allergic march in childhood. Allergy. 2009;64:884–9.

    Article  PubMed  Google Scholar 

  15. Kvenshagen B, Halvorsen R, Jacobsen M. Is there an increased frequency of food allergy in children delivered by caesarean section compared to those delivered vaginally? Acta Paediatr. 2009;98:324–7.

    Article  PubMed  Google Scholar 

  16. Federal Trade Commission, US Food and Drug Administration. “Miracle”health claims: add a dose of skepticism. 2001. Available at: http:// www.ftc.gov/bcp/edu/pubs/consumer/health/hea07.shtm. Accessed 14 Dec 2007.

    Google Scholar 

  17. Vanderhoof J, Young R. Probiotics in the United States. Clin Infect Dis. 2008;46 Suppl 2:S67–72.

    Article  PubMed  Google Scholar 

  18. Wrong OM. Definitions and history. In: Physiological and clinical aspects of short-chain fatty acids the large bowel. In: Cummings JH, Rombeau JL, Sakata T, editors. Physiological and clinical aspects of short-chain fatty acids. Cambridge: Cambridge University Press; 2005. p. 1–14.

    Google Scholar 

  19. Macfarlane GT, Gibson GR. Microbiological aspects of the production of short-chain fatty acids in the large bowel. In: Cummings JH, Rombeau JL, Sakata T, editors. Physiological and clinical aspects of short-chain fatty acids. Cambridge: Cambridge University Press; 1995. p. 87–106.

    Google Scholar 

  20. Gilat T, Ben Hur H, Geiman-Malachi E, Terdiman R, Peled Y. Alterations of the colonic flora and their effect on the hydrogen breath test. Gut. 1978;19:602–5.

    Article  PubMed  CAS  Google Scholar 

  21. Perman A, Modler S, Olson AC. Role of pH in production of hydrogen from carbohydrates by colonic bacterial flora Studies in vivo and in vitro. J Clin Invest. 1981;67:643–50.

    Article  PubMed  CAS  Google Scholar 

  22. Stevenson DK. Breath hydrogen in preterm infants. Am J Dis Child. 1989;143(11):1262–3.

    PubMed  CAS  Google Scholar 

  23. Strocchi A, Levitt MD. Factors affecting hydrogen production and consumption by human fecal flora. The critical roles of hydrogen tension and methanogenesis. J Clin Invest. 1992;89(4):1304–11.

    Article  PubMed  CAS  Google Scholar 

  24. Rutili A, Canzi E, Brusa T, Ferrari A. Intestinal methanogenic bacteria in children of different ages. New Microbiol. 1996;19(3):227–43.

    PubMed  CAS  Google Scholar 

  25. Tappenden KA, Thomson AB, Wild GE, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition enhances functional adaptation to intestinal resection in rats. Gastroenterology. 1997;112(3):792–802.

    Article  PubMed  CAS  Google Scholar 

  26. Breuer RI, Soergel KH, Lashner BA, Christ ML, Hanauer SB, Vanagunas A, et al. Short chain fatty acid rectal irrigation for left-sided ulcerative colitis. A randomised, placebo controlled trial. Gut. 1997;40:485–91.

    PubMed  CAS  Google Scholar 

  27. Martin SA. Nutrient transport by ruminal bacteria: a review. J Anim Sci. 1994;72:3019–31.

    PubMed  CAS  Google Scholar 

  28. Basson MD, Turowski GA, Rashid Z, Hong F, Madri A. Regulation of human colonic cell line proliferation and phenotype by sodium butyrate. Dig Dis Sci. 1996;41:1989–93.

    Article  PubMed  CAS  Google Scholar 

  29. Scheppach W, Mullcr JC, Boxberger E, Dusel G, Richter F, et al. Histological changes in the colonic mucosa following irrigation with short-chain fatty acids. Eur J Gastroenterol Hepatol. 1997;9(2):163–8.

    Article  PubMed  CAS  Google Scholar 

  30. Frankel W, Lew J, Su B, Bain A, Kiurfeld D, Einhorn E, et al. Butyrate increases colonocyte protein synthesis in ulcerative colitis. J Surg Res. 1994;57:210–4.

    Article  PubMed  CAS  Google Scholar 

  31. Wilson AJ, Gibson PR. Short-chain fatty acids promote the migration of colonic epithelial cells in vitro. Gastroenterology. 1997;113(2):487–96.

    Article  PubMed  CAS  Google Scholar 

  32. Fitch MD, Fleming SE. Metabolism of short-chain fatty acids by rat colonic mucosa in vivo. Physiology. 1999;277:G31–40.

    CAS  Google Scholar 

  33. Krishnan S, Ramakrishna BS. Butyrate and glucose metabolism in isolated colonocytes in the developing rat colon. J Pediatr Gastroenterol Nutr. 1998;26:432–6.

    Article  PubMed  CAS  Google Scholar 

  34. Said HM, Ortiz A, McCloud E, Dyer D, Moyer MP, Rubin S. Biotin uptake by human colonic epithelial NCM460 cells: a carrier-mediated process shared with pantothenic acid. Am J Phvsiol. 1998;275(5 pt 1):C1365–71.

    CAS  Google Scholar 

  35. Brand-Miller JC, McVeagh P, McNeil Y, Messer M. Digestion of human milk oligosaccharides by healthy infants evaluated by the lactulose hydrogen breath test. J Pediatr. 1998;133:95–8.

    Article  PubMed  CAS  Google Scholar 

  36. Long SS, Swenson RM. Development of anaerobic fecal flora in healthy newborn infants. J Pediatr. 1977;91:298–301.

    Article  PubMed  CAS  Google Scholar 

  37. Groniund MM, Lehtonen OP, Eerola E, Kero P. Fecal micro flora in healthy infants born by different methods of delivery. Permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28:19–25.

    Article  Google Scholar 

  38. Sakata H, Yoshioka H, Fujita K. Development of the intestinal flora in. Very low birth weight infants compared to normal full-term newborns. Eur J Pediatr. 1985;144(2):186–90.

    Article  PubMed  CAS  Google Scholar 

  39. Langhendries JP, Detry J, Van Hees J, Lamboray JM, Darimont J, Mozin MJ, et al. Effect of a fermented infant formula containing viable bifidobacteria on the fecal flora composition and pH of healthy full-term infants. Acta Paediatr Scand. 1985;74:45–51.

    Article  Google Scholar 

  40. Lundequist B, Nord CE, Winberg J. The composition of the faecal microflora in breastfed and the role of colonic fermentation in infants bottle fed infants from birth to eight weeks. Eur J Pediatr. 1985;144:186–90.

    Article  Google Scholar 

  41. Balmer SE, Scott PH, Wharton BA. Diet and faecal flora in the newborn: Casein and whey proteins. Arch Dis Child. 1989;64:1678–84.

    Article  PubMed  CAS  Google Scholar 

  42. Kleessen B, Bunke H, Tovar K, Noack J, Sawatzki G. Influence of two infant formulas and human milk on the development of the faecal flora in newborn infants. Acta Paediatr. 1995;84:1347–56.

    Article  PubMed  CAS  Google Scholar 

  43. Mykkanen H, Tikka J, Pitkanen T, Hanninen O. Fecal bacterial enzyme activities in infants Increase with age and adoption of adult-type diet. J Pediatr Gastroenterol Nutr. 1997;25(3):312–6.

    Article  PubMed  CAS  Google Scholar 

  44. Balmer SE, Wharton BA. Diet and faecal flora in the newborn: Iron. Arch Dis Child. 1991;66:1390–4.

    Article  PubMed  CAS  Google Scholar 

  45. Lifschitz CH, Wolin MJ, Reeds PJ. Characterization of carbohydrate fermentation in feces of formula-fed and breast fed infants. Pediatr Res. 1990;27:165–9.

    Article  PubMed  CAS  Google Scholar 

  46. MacLean Jr WC, Fink BB. Lactose malabsorption by premature infants: magnitude and clinical significance. J Pediatr. 1980;97:383–8.

    Article  PubMed  Google Scholar 

  47. Kien CL, Liechty EA, Myerberg DZ, Mullett MD. Dietary carbohydrate assimilation in the premature infant: evidence for a nutritionally significant bacterial ecosystem in the colon. Am J Clin Nutr. 1987;46:456–60.

    PubMed  CAS  Google Scholar 

  48. Edwards CA, Parrett AM, Balmer SE, Wharton BA. Faecal short chain fatty acids in breast-fed and formula-fed babies. Acta Paediatr. 1994;83:459–62.

    Article  PubMed  CAS  Google Scholar 

  49. Norin KE, Gustafsson BE, Lindblad BS, Midtvedt T. The establishment of some microflora associated biochemical characteristics in feces from children during the first years of life. Acta Paediatr Scand. 1985;74(2):207–12.

    Article  PubMed  CAS  Google Scholar 

  50. Jenkins HR, Schnackenberg U, Milla PJ. In vitro studies of sodium transport in human infant colon: the influence of acetate. Pediatr Res. 1993;34:666–9.

    Article  PubMed  CAS  Google Scholar 

  51. Murray RD, McClung HJ, Li BU, Ailabouni A. Stimulatory effects of short-chain fatty acids on colonic absorption in newborn piglets in vivo. J Pediatr Gastroenterol Nutr. 1989;8:95–101.

    Article  PubMed  CAS  Google Scholar 

  52. Argenzio RA, Moon HW, Kemeny LJ, Whipp SC. Colonic compensation of transmissible gastro-enteritis in swine. Gastroenterology. 1984;86:1501–6.

    PubMed  CAS  Google Scholar 

  53. Bhatia J, Prihoda AR, Richardson CJ. Parenteral antibiotics and carbohydrate intolerance in term neonates. Am J Dis Child. 1986;144:111–3.

    Google Scholar 

  54. Lifschitz CH. Carbohydrate absorption from fruit juices in infants. Pediatrics. 1999

    Google Scholar 

  55. Smith MM, Davis M, Chasalow EL, Lifschitz E. Carbohydrate absorption from fruit juice in young children. Pediatrics. 1995;95(3):340–4.

    PubMed  CAS  Google Scholar 

  56. Moore DJ, Robb TA, Davidson GP. Breath hydrogen response to milk containing lactose 111 colicky and noncolicky infants. J Pediatr. 1988;113:979–84.

    Article  PubMed  CAS  Google Scholar 

  57. Hyams JS, Geertsma MA, Etienne NL, Treem WR. Colonic hydrogen production in infants with colic. J Pediatr. 1989;115:592–4.

    Article  PubMed  CAS  Google Scholar 

  58. Isolauri E, Juntunen M, Rautanen T, Sillanaukee P, Koivula T. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics. 1991;88:90–7.

    PubMed  CAS  Google Scholar 

  59. Coopersrock M, Riegie L, Woodruff CW, Onderdonk A. Influence of age, sex, and diet on asymptomatic colonization of infants with Clostridium difficle. J Clin Microbiol. 1983;17:830–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Lifschitz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lifschitz, C.H. (2013). The Role of Colonic Flora in Infants. In: Watson, R., Grimble, G., Preedy, V., Zibadi, S. (eds) Nutrition in Infancy. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-254-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-254-4_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-253-7

  • Online ISBN: 978-1-62703-254-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics