Skip to main content

An Introduction to Dissipative Particle Dynamics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

Dissipative particle dynamics (DPD) is a particle-based mesoscopic simulation method, which facilitates the studies of thermodynamic and dynamic properties of soft matter systems at physically interesting length and time scales. In this method, molecule groups are clustered into the dissipative beads, and this coarse-graining procedure is a very important aspect of DPD as it allows significant computational speed-up. In this chapter, we introduce the DPD methodology, including its theoretical foundation and its parameterization. With this simulation technique, we can study complex behaviors of biological systems, such as the formation of vesicles and their fusion and fission processes, and the phase behavior of lipid membranes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hoogerbrugge PJ, Koelman JMVA (1992) Simulation microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  2. Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulation of hard-sphere suspensions under steady shear. Europhys Lett 21:363–368

    Article  CAS  Google Scholar 

  3. Español P, Warren PB (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30:191–196

    Article  Google Scholar 

  4. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435

    Article  CAS  Google Scholar 

  5. Maiti A, McGrother S (2004) Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension. J Chem Phys 120:1594–1601

    Article  PubMed  CAS  Google Scholar 

  6. Flekkøy EG, Coveney PV (1999) From molecular dynamics to dissipative particle dynamics. Phys Rev Lett 83:1775–1778

    Article  Google Scholar 

  7. Flekkøy EG, Coveney PV, Fabritiis GD (2000) Foundation of dissipative particle dynamics. Phys Rev E 62:2140–2157

    Article  Google Scholar 

  8. Lowe CP (1999) An alternative approach to dissipative particle dynamics. Europhys Lett 47:145–151

    Article  CAS  Google Scholar 

  9. Chen LJ, Lu ZY, Qian HJ et al (2005) The effect of Lowe-Andersen temperature controlling method on the polymer properties in mesoscopic simulation. J Chem Phys 122:104907

    Article  PubMed  Google Scholar 

  10. Koopman EA, Lowe CP (2006) Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J Chem Phys 124:204103

    Article  PubMed  CAS  Google Scholar 

  11. Novik KE, Coveney PV (1998) Finite-difference methods for simulation models incorporating nonconservative forces. J Chem Phys 109:7667–7677

    Article  CAS  Google Scholar 

  12. Pagonabarrage I, Hagen MHJ, Frenkel D (1998) Self-consistent dissipative particle dynamics algorithm. Europhys Lett 42:377–382

    Article  Google Scholar 

  13. Besold G, Vattulainen I, Karttunen M et al (2000) Towards better integrators for dissipative particle dynamics simulations. Phys Rev E 62:R7611–R7614

    Article  CAS  Google Scholar 

  14. Vattulainen I, Karttunen M, Besold G et al (2002) Integration schemes for dissipative particle dynamics simulation: from softly interacting systems towards hybrid models. J Chem Phys 116:3967–3979

    Article  CAS  Google Scholar 

  15. Nikunen P, Karttunen M, Vattulainen I (2003) How would you integrate the equations of motion in dissipative particle dynamics simulations. Comput Phys Commun 153:407–423

    Article  CAS  Google Scholar 

  16. Symeonidis V, Karniadakis GE (2006) A family of time-staggered schemes for integrating hybrid DPD models for polymers: algorithms and applications. J Comput Phys 218:82–101

    Article  CAS  Google Scholar 

  17. Den Otter WK, Clarke JHR (2001) A new algorithm for dissipative particle dynamics. Europhys Lett 53:426–431

    Article  Google Scholar 

  18. Marsh CA, Yeomans JM (1997) Dissipative particle dynamics: the equilibrium for finite time steps. Europhys Lett 37:511–516

    Article  CAS  Google Scholar 

  19. Jakobsen AF, Mouritsen OG, Besold G (2005) Artifacts in dynamical simulations of coarse-grained model lipid bilayers. J Chem Phys 122:204901

    Article  PubMed  Google Scholar 

  20. Allen MP (2006) Configurational temperature in membrane simulations using dissipative particle dynamics. J Phys Chem B 110:3823–3830

    Article  PubMed  CAS  Google Scholar 

  21. Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology changes and rupture by nonionic surfactant. Biophys J 81:725–736

    Article  PubMed  CAS  Google Scholar 

  22. Kranenburg M, Nicolas JP, Smit B (2004) Comparision of mesoscopic phospholipids-water models. Phys Chem Chem Phys 6:4142–4151

    Article  CAS  Google Scholar 

  23. Kranenburg M, Laforge C, Smit B (2004) Mesoscopic simulations of phase transitions in lipid bilayers. Phys Chem Chem Phys 6:4531–4534

    Article  CAS  Google Scholar 

  24. Kranenburg M, Smit B (2005) Phase behavior of model lipid bilayers. J Phys Chem B 109:6553–6563

    Article  PubMed  CAS  Google Scholar 

  25. Kranenburg M, Vlaar M, Smit B (2004) Simulating induced integration in membranes. Biophys J 87:1596–1605

    Article  PubMed  CAS  Google Scholar 

  26. Patra M, Salonen E, Terama E et al (2006) Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. Biophys J 90:1121–1135

    Article  PubMed  CAS  Google Scholar 

  27. De Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipids bilayer. Proc Natl Acad Sci USA 106:3654–3658

    Article  PubMed  Google Scholar 

  28. Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys 117:5048–5061

    Article  CAS  Google Scholar 

  29. Gao LH, Shillcock JC, Lipowsky R (2007) Improved dissipative particle dynamics simulations of lipid bilayers. J Chem Phys 126:015101

    Article  PubMed  Google Scholar 

  30. Shillcock JC, Lipowsky R (2005) Tension-induced fusion of bilayer membranes and vesicles. Mater 4:225–228

    Article  PubMed  CAS  Google Scholar 

  31. Grafmüller A, Shillcock JC, Lipowsky R (2007) Pathway of membrane fusion with two tension-dependent energy barriers. Phys Rev Lett 98:218101

    Article  PubMed  Google Scholar 

  32. Gao LH, Lipowsky R, Shillcock JC (2008) Tension-induced vesicle fusion: pathway and pore dynamics. Soft Matter 4:1208–1214

    Article  CAS  Google Scholar 

  33. Grafmüller A, Shillcock JC, Lipowsky R (2009) The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. Biophys J 96:2658–2675

    Article  PubMed  Google Scholar 

  34. Shillcock JC, Lipowsky R (2006) The computational route from bilayer membranes to vesicle fusion. J Phys Condens Matter 18:S1191–S1219

    Article  PubMed  CAS  Google Scholar 

  35. Lyubartsev AP, Karttunen M, Vattulainen I et al (2003) On coarse-graining by the inverse Monte Carlo method: dissipative particle dynamics simulations made to a precise tool in soft matter modeling. Soft Mater 1:121–137

    Article  CAS  Google Scholar 

  36. Chen LJ, Qian HJ, Lu ZY et al (2006) An automatic coarse-graining and fine-graining simulation method: application on polyethylene. J Phys Chem B 110:24093–24100

    Article  PubMed  CAS  Google Scholar 

  37. Soddemann T, Dünweg B, Kremer K (2003) Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys Rev E 68:046702

    Article  Google Scholar 

  38. Junghans C, Praprotnik M, Kremer K (2008) Transport properties controlled by a thermostat: an extended dissipative particle dynamics thermostat. Soft Matter 4:156–161

    Article  CAS  Google Scholar 

  39. Eriksson A, Jacobi MN, Nystrom J et al (2008) Effective thermostat induced by coarse-graining of simple point charge water. J Chem Phys 129:024106

    Article  PubMed  Google Scholar 

  40. Qian HJ, Liew CC, Müller-Plathe F (2009) Effective control of the transport coefficients of a coarse-grained liquid and polymer models using the dissipative particle dynamics and Lowe-Andersen equations of motion. Phys Chem Chem Phys 11:1962–1969

    Article  PubMed  CAS  Google Scholar 

  41. Wu SG, Guo HX (2009) Simulation study of protein-mediated vesicle fusion. J Phys Chem B 113:589–591

    Article  PubMed  CAS  Google Scholar 

  42. Yamamoto S, Hyodo S (2003) Budding and fission dynamics of two-component vesicles. J Chem Phys 118:7937–7943

    Article  CAS  Google Scholar 

  43. Hong BB, Qiu F, Zhang HD et al (2007) Budding dynamics of individual domains in multicomponent membranes simulated by N-varied dissipative particle dynamics. J Phys Chem B 111:5837–5849

    Article  PubMed  CAS  Google Scholar 

  44. Liu YT, Zhao Y, Liu H et al (2009) Spontaneous fusion between the vesicle formed by A2n(B2)n type comb-like block copolymers with a semiflexible hydrophobic backbone. J Phys Chem B 113:15256–15262

    Article  PubMed  CAS  Google Scholar 

  45. Yang K, Shao X, Ma YQ (2009) Shape deformation and fission route of the lipid domain in a multicomponent vesicle. Phys Rev E 79:051924

    Article  Google Scholar 

  46. Pivkin IV, Karniadakis GE (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101:118105

    Article  PubMed  Google Scholar 

  47. Smith KA, Uspal WE (2007) Shear-driven release of a bud from a multicomponent vesicle. J Chem Phys 126:075102

    Article  PubMed  Google Scholar 

  48. Avalos JB, Mackie AD (1997) Dissipative particle dynamics with energy conservation. Europhys Lett 40:141–146

    Article  CAS  Google Scholar 

  49. Español P (1997) Dissipative particle dynamics with energy conservation. Europhys Lett 40:631–636

    Article  Google Scholar 

  50. Mackie AD, Avalos JB, Navas V (1999) Dissipative particle dynamics with energy conservation: modeling of heat flow. Phys Chem Chem Phys 1:2039–2049

    Article  CAS  Google Scholar 

  51. Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67:026705

    Article  Google Scholar 

  52. Pagonabarraga I, Frenkel D (2001) Dissipative particle dynamics for interacting systems. J Chem Phys 115:5015–5026

    Article  CAS  Google Scholar 

  53. Trofimov SY, Nies ELF, Michels MAJ (2002) Thermodynamics consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J Chem Phys 117:9383–9394

    Article  CAS  Google Scholar 

  54. Trofimov SY, Nies ELF, Michels MAJ (2005) Constant-pressure simulations with dissipative particle dynamics. J Chem Phys 123:144102

    Article  PubMed  CAS  Google Scholar 

  55. Warren PB (2003) Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys Rev E 68:066702

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yuan Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lu, ZY., Wang, YL. (2013). An Introduction to Dissipative Particle Dynamics. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics