Skip to main content

Molecular Modulation of In Vivo Tolerance

  • Chapter
  • First Online:
  • 1591 Accesses

Part of the book series: The Receptors ((REC))

Abstract

Opioid tolerance can limit the clinical utility of opioids for pain management. It is a neuroadaptive response to the repeated administration of an opioid. Opioid tolerance is predominantly of the pharmacological (nonassociative) and pharmacodynamic type. Possible contributions to tolerance at the receptor level include receptor desensitization, internalization, and recycling. Alterations of G proteins, other intracellular signaling cascades and receptor–receptor interactions also may be involved. At the systems level, opioid-induced hyperalgesia, N-methyl-d-aspartate receptor mechanisms, activation of the immune system, and genetic factors have all been implicated. Each of these potential contributors is discussed. Establishing the mechanism(s) of tolerance remains an elusive as well as a continuing challenge. However, some of the mechanisms discussed in this chapter appear to have the potential to provide new approaches for reducing or eliminating the development of opioid tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McQuay H (1999) Opioids in pain management. Lancet 353:2229–2232

    Article  PubMed  CAS  Google Scholar 

  2. Inturrisi CE (2002) Clinical pharmacology of opioids for pain. Clin J Pain 18:S3–S13

    Article  PubMed  Google Scholar 

  3. Wood JD, Galligan JJ (2004) Function of opioids in the enteric nervous system. Neurogastroenterol Motil 16(suppl 2):17–28

    Article  PubMed  Google Scholar 

  4. Houde RW, Wallenstein SL, Beaver WT (1966) Evaluation of analgesics in patients with cancer pain. In: Lasagna L (ed) International encyclopedia of pharmacology and therapeutics. Pergamon, New York, pp 59–97

    Google Scholar 

  5. Foley KM (1991) Clinical tolerance to opioids. In: Basbaum AI, Besson JM (eds) Towards a new pharmacotherapy of pain. Wiley, New York, pp 181–203

    Google Scholar 

  6. Bespalov AY, Zvartau EE, Beardsley PM (2001) Opioid-NMDA receptor interactions may clarify conditioned (associative) components of opioid analgesic tolerance. Neurosci Biobehav Rev 25:343–353

    Article  PubMed  CAS  Google Scholar 

  7. Bruera E, O’Pereira J (1997) Neuropsychiatric toxicity of opioids. In: Jensen TS, Turner JA, Wiesenfeld-Hallin Z (eds) Proceedings of the Eighth World Congress on Pain. IASP Press, Seattle, pp 717–738

    Google Scholar 

  8. Chu LF, Clark D, Angst MS (2009) Molecular basis and clinical implications of opioid tolerance and opioid-induced hyperalgesia. In: Sinatara A, DeLeon-Cassasola O, Viscusi E, Ginsberg B (eds) Acute pain management. Cambridge University Press, New York, pp 114–146

    Chapter  Google Scholar 

  9. Kanner RM, Foley KM (1981) Patterns of narcotic drug use in a cancer pain clinic. Ann N Y Acad Sci 362:161–172

    Article  PubMed  CAS  Google Scholar 

  10. Pasternak GW (2001) Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci 22:67–70

    Article  PubMed  CAS  Google Scholar 

  11. Inturrisi CE (2007) Opioid rotation. In: Schmidt RF, Willis WD (eds) Encyclopedia of pain. Springer, New York, pp 1561–1564

    Chapter  Google Scholar 

  12. Pereira J, Lawlor P, Vigano A, Dorgan M, Bruera E (2001) Equianalgesic dose ratios for opioids: a critical review and proposals for long-term dosing. J Pain Symptom Manage 22:672–687

    Article  PubMed  CAS  Google Scholar 

  13. Chou R, Fanciullo GJ, Fine PG et al (2009) Clinical guidelines for the use of chronic opioid therapy in chronic noncancer pain. J Pain 10:113–130

    Article  PubMed  CAS  Google Scholar 

  14. Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  PubMed  CAS  Google Scholar 

  15. Polakiewicz RD, Schieferl SM, Dorner LF, Kansra V, Comb MJ (1998) A mitogen-activated protein kinase pathway is required for mu-opioid receptor desensitization. J Biol Chem 273:12402–12406

    Article  PubMed  CAS  Google Scholar 

  16. Mestek A, Hurley JH, Bye LS et al (1995) The human mu opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C. J Neurosci 15:2396–2406

    PubMed  CAS  Google Scholar 

  17. Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737–746

    Article  PubMed  CAS  Google Scholar 

  18. He L, Fong J, von Zastrow M, Whistler JL (2002) Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108:271–282

    Article  PubMed  CAS  Google Scholar 

  19. Bernstein MA, Welch SP (1998) mu-Opioid receptor down-regulation and cAMP-dependent protein kinase phosphorylation in a mouse model of chronic morphine tolerance. Brain Res Mol Brain Res 55:237–242

    Article  PubMed  CAS  Google Scholar 

  20. Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153(suppl 1):S379–S388

    PubMed  CAS  Google Scholar 

  21. Sim-Selley LJ, Scoggins KL, Cassidy MP et al (2007) Region-dependent attenuation of mu opioid receptor-mediated G protein activation in mouse CNS as a function of morphine tolerance. Br J Pharmacol 151:1324–1333

    Article  PubMed  CAS  Google Scholar 

  22. Bohn LM, Lefkowitz RJ, Caron MG (2002) Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2 knock-out mice. J Neurosci 22:10494–10500

    PubMed  CAS  Google Scholar 

  23. Hanyaloglu AC, von Zastrow M (2008) Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48:537–568

    Article  PubMed  CAS  Google Scholar 

  24. Arttamangkul S, Quillinan N, Low MJ, von Zastrow M, Pintar J, Williams JT (2008) Differential activation and trafficking of micro-opioid receptors in brain slices. Mol Pharmacol 74:972–979

    Article  PubMed  CAS  Google Scholar 

  25. Finn AK, Whistler JL (2001) Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron 32:829–839

    Article  PubMed  CAS  Google Scholar 

  26. Sharma SK, Klee WA, Nirenberg M (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA 72:3092–3096

    Article  PubMed  CAS  Google Scholar 

  27. Chakrabarti S, Regec A, Gintzler AR (2005) Biochemical demonstration of mu-opioid receptor association with Gsalpha: enhancement following morphine exposure. Brain Res Mol Brain Res 135:217–224

    Article  PubMed  CAS  Google Scholar 

  28. Crain SM, Shen KF (1998) GM1 ganglioside-induced modulation of opioid receptor-mediated functions. Ann N Y Acad Sci 845:106–125

    Article  PubMed  CAS  Google Scholar 

  29. Garzon J, Rodriguez-Munoz M, de la Torre-Madrid E, Sanchez-Blazquez P (2005) Effector antagonism by the regulators of G protein signalling (RGS) proteins causes desensitization of mu-opioid receptors in the CNS. Psychopharmacology (Berl) 180:1–11

    Article  CAS  Google Scholar 

  30. Gintzler AR, Chakrabarti S (2006) Post-opioid receptor adaptations to chronic morphine; altered functionality and associations of signaling molecules. Life Sci 79:717–722

    Article  PubMed  CAS  Google Scholar 

  31. Devi LA (2001) Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking. Trends Pharmacol Sci 22:532–537

    Article  PubMed  CAS  Google Scholar 

  32. Dietis N, Guerrini R, Calo G, Salvadori S, Rowbotham DJ, Lambert DG (2009) Simultaneous targeting of multiple opioid receptors: a strategy to improve side-effect profile. Br J Anaesth 103:38–49

    Article  PubMed  CAS  Google Scholar 

  33. Abdelhamid EE, Sultana M, Portoghese PS, Takemori AE (1991) Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 258:299–303

    PubMed  CAS  Google Scholar 

  34. Kest B, Lee CE, McLemore GL, Inturrisi CE (1996) An antisense oligodeoxynucleotide to the delta opioid receptor (DOR-1) inhibits morphine tolerance and acute dependence in mice. Brain Res Bull 39:185–188

    Article  PubMed  CAS  Google Scholar 

  35. Nitsche JF, Schuller AG, King MA, Zengh M, Pasternak GW, Pintar JE (2002) Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice. J Neurosci 22:10906–10913

    PubMed  CAS  Google Scholar 

  36. Bailey CP, Smith FL, Kelly E, Dewey WL, Henderson G (2006) How important is protein kinase C in mu-opioid receptor desensitization and morphine tolerance? Trends Pharmacol Sci 27:558–565

    Article  PubMed  CAS  Google Scholar 

  37. Mayer DJ, Mao J, Price DD (1995) The development of morphine tolerance and dependence is associated with translocation of protein kinase C. Pain 61:365–374

    Article  PubMed  CAS  Google Scholar 

  38. Inturrisi C (1997) Preclinical evidence for a role of glutamatergic systems in opioid tolerance and dependence. Semin Neurosci 9:110–119

    Article  CAS  Google Scholar 

  39. Granados-Soto V, Kalcheva I, Hua X, Newton A, Yaksh TL (2000) Spinal PKC activity and expression: role in tolerance produced by continuous spinal morphine infusion. Pain 85:395–404

    Article  PubMed  CAS  Google Scholar 

  40. Hua XY, Moore A, Malkmus S et al (2002) Inhibition of spinal protein kinase Calpha expression by an antisense oligonucleotide attenuates morphine infusion-induced tolerance. Neuroscience 113:99–107

    Article  PubMed  CAS  Google Scholar 

  41. Smith FL, Gabra BH, Smith PA, Redwood MC, Dewey WL (2007) Determination of the role of conventional, novel and atypical PKC isoforms in the expression of morphine tolerance in mice. Pain 127:129–139

    Article  PubMed  CAS  Google Scholar 

  42. Lee SH, Park J, Che Y, Han PL, Lee JK (2000) Constitutive activity and differential localization of p38alpha and p38beta MAPKs in adult mouse brain. J Neurosci Res 60:623–631

    Article  PubMed  CAS  Google Scholar 

  43. Ortiz J, Harris HW, Guitart X, Terwilliger RZ, Haycock JW, Nestler EJ (1995) Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J Neurosci 15:1285–1297

    PubMed  CAS  Google Scholar 

  44. Belcheva MM, Vogel Z, Ignatova E et al (1998) Opioid modulation of extracellular signal-regulated protein kinase activity is ras-dependent and involves Gbetagamma subunits. J Neurochem 70:635–645

    Article  PubMed  CAS  Google Scholar 

  45. Liu JG, Anand KJ (2001) Protein kinases modulate the cellular adaptations associated with opioid tolerance and dependence. Brain Res Brain Res Rev 38:1–19

    Article  PubMed  CAS  Google Scholar 

  46. Hardingham GE, Arnold FJ, Bading H (2001) A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat Neurosci 4:565–566

    Article  PubMed  CAS  Google Scholar 

  47. Waxman EA, Lynch DR (2005) N-methyl-D-aspartate receptor subtype mediated bidirectional control of p38 mitogen-activated protein kinase. J Biol Chem 280:29322–29333

    Article  PubMed  CAS  Google Scholar 

  48. Cao JL, He JH, Ding HL, Zeng YM (2005) Activation of the spinal ERK signaling pathway contributes naloxone-precipitated withdrawal in morphine-dependent rats. Pain 118:336–349

    Article  PubMed  CAS  Google Scholar 

  49. Cao JL, Liu HL, Wang JK, Zeng YM (2006) Cross talk between nitric oxide and ERK1/2 signaling pathway in the spinal cord mediates naloxone-precipitated withdrawal in morphine-dependent rats. Neuropharmacology 51:315–326

    Article  PubMed  CAS  Google Scholar 

  50. Cui Y, Chen Y, Zhi JL, Guo RX, Feng JQ, Chen PX (2006) Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res 1069:235–243

    Article  PubMed  CAS  Google Scholar 

  51. Koob GF (1996) Drug addiction: the yin and yang of hedonic homeostasis. Neuron 16:893–896

    Article  PubMed  CAS  Google Scholar 

  52. Celerier E, Laulin J, Larcher A, Le Moal M, Simonnet G (1999) Evidence for opiate-activated NMDA processes masking opiate analgesia in rats. Brain Res 847:18–25

    Article  PubMed  CAS  Google Scholar 

  53. Li H, Angst MS, Clark JD (2001) A murine model of opioid-induced hyperalgesia. Mol Brain Res 86:56–62

    Article  PubMed  CAS  Google Scholar 

  54. Raghavendra V, Rutkowski MD, DeLeo JA (2002) The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci 22:9980–9989

    PubMed  CAS  Google Scholar 

  55. Angst MS, Clark JD (2006) Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 104:570–587

    Article  PubMed  CAS  Google Scholar 

  56. Davis AM, Inturrisi CE (2001) Attenuation of hyperalgesia by LY235959, a competitive N-methyl-D-aspartate receptor antagonist. Brain Res 894:150–153

    Article  PubMed  CAS  Google Scholar 

  57. Elliott K, Hynansky A, Inturrisi CE (1994) Dextromethorphan attenuates and reverses analgesic tolerance to morphine. Pain 59:361–368

    Article  PubMed  CAS  Google Scholar 

  58. Mao J, Sung B, Ji RR, Lim G (2002) Chronic morphine induces down-regulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J Neurosci 22:8312–8323

    PubMed  CAS  Google Scholar 

  59. Tai YH, Wang YH, Tsai RY et al (2007) Amitriptyline preserves morphine’s antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats. Pain 129:343–354

    Article  PubMed  CAS  Google Scholar 

  60. Kolesnikov YA, Pan YX, Babey AM, Jain S, Wilson R, Pasternak GW (1997) Functionally differentiating two neuronal nitric oxide synthase isoforms through antisense mapping: evidence for opposing NO actions on morphine analgesia and tolerance. Proc Natl Acad Sci USA 94:8220–8225

    Article  PubMed  CAS  Google Scholar 

  61. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    Article  PubMed  CAS  Google Scholar 

  62. Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705

    Article  PubMed  CAS  Google Scholar 

  63. Garraway SM, Xu Q, Inturrisi CE (2009) siRNA-mediated knockdown of the NR1 subunit gene of the NMDA receptor attenuates formalin-induced pain behaviors in adult rats. J Pain 10:380–390

    Article  PubMed  CAS  Google Scholar 

  64. Carroll IR, Angst MS, Clark JD (2004) Management of perioperative pain in patients chronically consuming opioids. Reg Anesth Pain Med 29:576–591

    PubMed  Google Scholar 

  65. Watkins LR, Hutchinson MR, Johnston IN, Maier SF (2005) Glia: novel counter-regulators of opioid analgesia. Trends Neurosci 28:661–669

    Article  PubMed  CAS  Google Scholar 

  66. Raghavendra V, Tanga FY, DeLeo JA (2004) Attenuation of morphine tolerance, withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology 29:327–334

    Article  PubMed  CAS  Google Scholar 

  67. Kest B, Hopkins E, Palmese CA, Adler M, Mogil JS (2002) Genetic variation in morphine analgesic tolerance: a survey of 11 inbred mouse strains. Pharmacol Biochem Behav 73:821–828

    Article  PubMed  CAS  Google Scholar 

  68. Liang DY, Liao G, Wang J et al (2006) A genetic analysis of opioid-induced hyperalgesia in mice. Anesthesiology 104:1054–1062

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

CEI is supported in part by NIDA grant DA001457 and NIDA center grant DA005130. AMG was supported by NIDA training grant DA007274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Inturrisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Inturrisi, C.E., Gregus, A.M. (2011). Molecular Modulation of In Vivo Tolerance. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_16

Download citation

Publish with us

Policies and ethics