Skip to main content

Stem Cell Transplantation to the Heart

  • Chapter
  • First Online:
Stem Cells & Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Cardiovascular disease remains the most potent killer in all developed societies. Heart failure is the most common cause of hospitalization in the United States. Despite impressive improvements in the interventional and medical therapy of ischemic coronary artery disease, this disorder remains the most common cause of heart failure. Given the severe limitation on the availability of and the long-term morbidity associated with cardiac transplantation, a means of preventing or reversing the loss of functional myocardium in end-stage heart disease is an important translational target. This chapter discusses the progress of cardiac transplantation and the development of possible clinical targets, as well as clinical trials in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velagaleti, R.S., Pencina, M.J., Murabito, J.M., et al (2008) Long-term trends in the incidence of heart failure after myocardial infarction. Circulation, 118, 2057–2062.

    Article  PubMed  Google Scholar 

  2. American Heart Association (2002) Heart and Stroke Statistical Update (American Heart Association, Dallas, TX).

    Google Scholar 

  3. Krum, H. and Gilbert, R.E. (2003) Demographics and concomitant disorders in heart failure. Lancet, 362, 147–158.

    Article  PubMed  Google Scholar 

  4. Hughes, S. (2002) Cardiac stem cells. J. Pathol. 197, 468–478.

    Article  PubMed  Google Scholar 

  5. Leor, J., Prentice, H., Sartorelli, V., et al (1997) Gene transfer and cell transplant: an experimental approach to repair a ‘broken heart’. Cardiovasc. Res. 35, 431–441.

    Article  PubMed  CAS  Google Scholar 

  6. Jain, M., DerSimonian, H., Brenner, D.A., et al (2001) Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation. 103, 1920 -1927.

    Article  PubMed  CAS  Google Scholar 

  7. Ghostine, S., Carrion, C., Souza, L.C., et al (2002) Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation. 106, I131–I136.

    PubMed  Google Scholar 

  8. Pouzet, B., Vilquin, J.T., Hage´ge, A.A., et al (2000) Intramyocardial transplantation of autologous myoblasts: can tissue processing be optimized? Circulation. 102, III210–III215.

    Article  PubMed  CAS  Google Scholar 

  9. Robinson, S.W., Cho, P.W., Levitsky, H.I., et al (1996) Arterial delivery of genetically labelled skeletal myoblasts to the murine heart: long-term survival and phenotypic modification of implanted myoblasts. Cell Transplant. 5, 77–91.

    Article  PubMed  CAS  Google Scholar 

  10. Saito, T., Dennis, J.E., Lennon, D.P., et al (1995) Myogenic expression of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Eng. 1, 327–343.

    Article  PubMed  CAS  Google Scholar 

  11. Grigoridis, A.E., Heersche, J.N.M., Aubin, J.E. (1988) Differentiation of muscle, fat, ­cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J. Cell Biol. 106, 2139 –2151.

    Article  Google Scholar 

  12. Wakitani, S., Saito, T., Caplan, A.I. (1994) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 18, 1417–1426.

    Article  Google Scholar 

  13. Makino, S., Fukuda, K., Miyoshi, S., et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705.

    Article  PubMed  CAS  Google Scholar 

  14. Tomita, S., Li, R-K., Weisel, R.D., et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 100, II-247-II-256.

    Article  CAS  Google Scholar 

  15. Orlic, D., Kajstura, J., Chimenti, S., et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature. 410, 701–705.

    Article  PubMed  CAS  Google Scholar 

  16. Balsam, L.B., Wagers, A.J., Christensen, J.L., et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 428, 668–673.

    Article  PubMed  CAS  Google Scholar 

  17. Murry, C.E., Soonpaa, M.H., Reinecke, H., et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 428, 664–668.

    Article  PubMed  CAS  Google Scholar 

  18. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J.M., et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 425, 968–973.

    Article  PubMed  CAS  Google Scholar 

  19. Nygren, J.M., Jovinge, S., Breitbach, M., et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501.

    Article  PubMed  CAS  Google Scholar 

  20. Kinnaird, T., Stabile, E., Burnett, M.S., et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678 – 685.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi, M., Li, T.S., Suzuki, R., et al (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am. J. Physiol. Heart Circ. Physiol. 291, H886 –H893.

    Article  PubMed  CAS  Google Scholar 

  22. Kamihata, H., Matsubara, H., Nishiue, T., et al (2001) Implantation of bone marrow ­mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 104, 1046 –1052.

    Article  PubMed  CAS  Google Scholar 

  23. Sasaki, K., Heeschen, C., Aicher, A., et al (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc. Natl. Acad. Sci. USA. 26, 14537–14541.

    Article  CAS  Google Scholar 

  24. Toma, C., Pittenger, M.F., Cahill, K.S., et al (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 105, 93–98.

    Article  PubMed  Google Scholar 

  25. Pittenger, M.F., Mackay, A.M., Beck, S.C., et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science. 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  26. Sensebé L, Bourin P. Mesenchymal stem cells for therapeutic purposes. Transplantation. 2009;87:S49–S53.

    Article  PubMed  Google Scholar 

  27. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279:1528–1530.

    Article  PubMed  CAS  Google Scholar 

  28. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11(4):377–391.

    Article  PubMed  CAS  Google Scholar 

  29. Li H, Malhotra D, Yeh C-C, Tu R, Zhu B-Q, Birger N, Wisneski A, Cha J, Karliner J,Mann MJ. Myocardial survival signaling in response to stem cell transplantation. J Am Coll Surg. 2009;208:607–613.

    Article  PubMed  Google Scholar 

  30. Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and ­differentiation potential. Blood. 2004 Mar 1;103(5):1662–1668.

    Article  PubMed  CAS  Google Scholar 

  31. Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RC. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg. 2000;120:999–1005.

    Article  PubMed  CAS  Google Scholar 

  32. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M, Tokudome T, Mori H, Miyatake K, Kitamura S. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005;112:1128 –1135.marrow mesenchymal cells into CCl4-injured rats.J Hepatol. 2006;44:742–748.

    Article  PubMed  Google Scholar 

  33. Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002;73:1919–1925.

    Article  PubMed  Google Scholar 

  34. Makkar RR, Price MJ, Lill M, Takizawa K, Frantzen M, Fishbein MC, et al. Multilineage differentiation of transplanted allogenic mesenchymal stem cells injected in a porcine model of recent myocardial infarction improves left ventricular function [Abstract]. Circulation. 2002;106:II34.

    Google Scholar 

  35. Qayyum MS, Takizawa K, Frantzen M, MacLellan R, Lill M, Fishbein MC, et al. Mesenchymal stem cell therapy prevents deterioration of left ventricular function in a porcine myocardial infarction model [Abstract]. J Am Coll Cardiol. 2002;39:169A.

    Article  Google Scholar 

  36. Min JY, Sullivan MF, Yang Y, Zhang JP, Converso KL, Morgan JP, et al. Significant improvement of heart function by cotransplantation of human mesenchymal stem cells and fetal ­cardiomyocytes in postinfarcted pigs. Ann Thorac Surg. 2002;74:1568–1575.

    Article  PubMed  Google Scholar 

  37. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204–1219.

    Article  PubMed  CAS  Google Scholar 

  38. Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994;264:98–101.

    Article  PubMed  CAS  Google Scholar 

  39. Scorsin M, Marotte F, Sabri A, Le Dref O, Demirag M, Samuel JL, et al. Can grafted ­cardiomyocytes colonize peri-infarct myocardial areas? Circulation. 1996;94:II337–II340.

    PubMed  CAS  Google Scholar 

  40. Li RK, Jia ZQ, Weisel RD, Mickle DA, Zhang J, Mohabeer MK, et al. Cardiomyocyte ­transplantation improves heart function. Ann Thorac Surg. 1996;62:654–660.

    Article  PubMed  CAS  Google Scholar 

  41. Etzion S, Battler A, Barbash IM, Cagnano E, Zarin P, Granot Y, et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol. 2001;33:1321–1330.

    Article  PubMed  CAS  Google Scholar 

  42. Van Meter CH Jr, Claycomb WC, Delcarpio JB, Smith DM, deGruiter H, Smart F, et al. Myoblast transplantation in the porcine model: a potential technique for myocardial repair.J Thorac Cardiovasc Surg. 1995;110:1442–1448.

    Article  PubMed  Google Scholar 

  43. Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol. 2002;92:288–296.

    Article  PubMed  CAS  Google Scholar 

  44. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D,Beyar R, Gepstein L. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol. 2007 Nov 6;50(19):1884–93.

    Article  PubMed  Google Scholar 

  45. Xie CQ, Zhang J, Xiao Y, Zhang L, Mou Y, Liu X, Akinbami M, Cui T, Chen YE. Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model. Stem Cells Dev. 2007 Feb;16(1):25–29.

    Article  PubMed  CAS  Google Scholar 

  46. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007 May;21(7):1345–1357.

    Article  PubMed  CAS  Google Scholar 

  47. Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS,Guetta E, Itskovitz-Eldor J. Human embryonic stem cell transplantation to repair the infarcted ­myocardium. Heart. 2007 Oct;93(10):1278–1284.

    Article  PubMed  Google Scholar 

  48. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L. Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells. Circulation. 2009 Sep 28. [Epub ahead of print]

    Google Scholar 

  49. O’shea KS. Embryonic stem cell models of development. Anat Rec. 1999; 257:32–41.

    Article  PubMed  Google Scholar 

  50. Gulati R, Simari RD. Cell therapyfor acutemyocardial infarction. Med Clin NorthAm 2007; 91:769–785.

    Article  PubMed  Google Scholar 

  51. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, et al. Mobilization of ­endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001;103:2776–2779.

    Article  PubMed  CAS  Google Scholar 

  52. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–228.

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for ­neovascularization. Nat Med. 1999;5:434–438.

    Article  PubMed  CAS  Google Scholar 

  54. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634–637.

    Article  PubMed  CAS  Google Scholar 

  55. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–436.

    Article  PubMed  CAS  Google Scholar 

  56. Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: ­implications for myocardium regeneration. Proc Natl Acad Sci USA. 2001;98:10733–10738.

    Article  PubMed  CAS  Google Scholar 

  57. Badorff C, Brandes RP, Popp R, Rupp S, Urbich C, Aicher A, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active ­cardiomyocytes. Circulation. 2003;107:1024–1032.

    Article  PubMed  Google Scholar 

  58. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH, Martin H, Zeiher AM, Dimmeler S. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004 Apr 6;109(13):1615–1622.

    Article  PubMed  Google Scholar 

  59. Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B,Silvestri F, Leri A, Beltrami CA, Anversa P. Evidence that human cardiac myocytes divide after ­infarction. N Engl J Med. 2001;344:1750 –1757.

    Article  PubMed  CAS  Google Scholar 

  60. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajustra J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–776.

    Article  PubMed  CAS  Google Scholar 

  61. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pociius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 2003;100:12313–12318.

    Article  PubMed  CAS  Google Scholar 

  62. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–921.

    Article  PubMed  CAS  Google Scholar 

  63. Bearzi C, Rota M, Hosoda T, Tillmans J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D’Alessandro DA,Zias E, Quaini F, Urbanek K, Micheler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA. 2007;104:14068–14073.

    Article  PubMed  CAS  Google Scholar 

  64. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abr aham MR, Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896 –908.

    Article  PubMed  CAS  Google Scholar 

  65. Johnston PV, Sasano T, Mills K, Evers R, Lee S-T, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marbán E. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 2009;120;1075–1083.

    Article  PubMed  CAS  Google Scholar 

  66. Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet. 2003;361:47–49.

    Article  PubMed  Google Scholar 

  67. Perin EC, Silva GV, Sarmento-Leite R, Sousa AL, Howell M, Muthupillai R, et al. Assessing myocardial viability and infarct transmurality with left ventricular electromechanical mapping in patients with stable coronary artery disease: validation by delayed-enhancement magnetic resonance imaging. Circulation. 2002;106:957–961.

    Article  PubMed  Google Scholar 

  68. Wolf T, Gepstein L, Dror U, Hayam G, Shofti R, Zaretzky A, et al. cardial infarction. J Am Coll Cardiol. 2001;37:1590–1597.

    Article  PubMed  CAS  Google Scholar 

  69. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther. 2006;14:840 – 850.

    Article  PubMed  CAS  Google Scholar 

  70. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. Evidence supporting paracrine hypothesis for Akt-modifiedmesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20:661– 669.

    Article  PubMed  CAS  Google Scholar 

  71. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076 –1084.

    Article  PubMed  CAS  Google Scholar 

  72. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and ­promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004;94:678 – 685.

    Article  PubMed  CAS  Google Scholar 

  73. Burt RK, Loh Y, Pearce W, et al. Clinical applicationsof blood-derivedand marrow-­derivedstemcellsfor nonmalignant diseases. JAMA 2008; 299:925–936.

    Article  PubMed  CAS  Google Scholar 

  74. Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Int Med 2007; 167:989–997.

    Article  Google Scholar 

  75. Martin-Rendon, E, Brunskill, SJ, Hyde, CJ, Stanworth, SJ, Mathur, A and Watt, SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J 2008;29: 1807–1818.

    Article  PubMed  CAS  Google Scholar 

  76. Menasche P. Cell-based therapy for heart disease: a clinically oriented perspective. Mol Ther 2009;17:758–766.

    Article  PubMed  CAS  Google Scholar 

  77. Lunde, K, Solheim, S, Aakhus, S, Arnesen, H, Abdelnoor, M, Egeland, T et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355: 1199–1209.

    Article  PubMed  CAS  Google Scholar 

  78. Janssens, S, Dubois, C, Bogaert, J, Theunissen, K, Deroose, C, Desmet, W et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006;367: 113–121.

    Article  PubMed  Google Scholar 

  79. Huikuri, HV, Kervinen, K, Niemelä, M, Ylitalo, K, Säily, M, Koistinen, P et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur Heart 2008;29: 2723–2732.

    Article  Google Scholar 

  80. Mansour, S, Vanderheyden, M, De Bruyne, B, Vandekerckhove, B, Delrue, L, Van Haute, I et al. Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. J Am Coll Cardiol 2006;47: 1727–1730.

    Article  PubMed  Google Scholar 

  81. Mocini, D, Staibano, M, Mele, L, Giannantoni, P, Menichella, G, Colivicchi, F et al. Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J 2006;151: 192–207.

    Article  PubMed  Google Scholar 

  82. Hendrikx, M, Hensen, K, Clijsters, C, Jongen, H, Koninckx, R, Bijnens, E et al. Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation 2006;114:I101–I107.

    Article  PubMed  Google Scholar 

  83. Ang, KL, Chin, D, Leyva, F, Foley, P, Kubal, C, Chalil, S et al. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nat Clin Pract Cardiovasc Med 2008;5: 663–670.

    Article  PubMed  Google Scholar 

  84. Bel, A, Messas, E, Agbulut, O, Richard, P, Samuel, JL, Bruneval P, et al. Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation 2003;108: II247–II252.

    Article  PubMed  Google Scholar 

  85. Hagege, AA, Carrion, C, Menasche, P, Vilquin, JT, Duboc, D, Marolleau, JP et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation 2006;114: I108–I113.

    Article  PubMed  Google Scholar 

  86. Menasché, Ph, Alfieri, O, Janssens, S, McKenna, W, Reichenspurner, H, Trinquart, L et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial. First Randomized Placebo-Controlled Study of Myoblast Transplantation. Circulation 2008;117: 1189–1200.

    Article  PubMed  Google Scholar 

  87. Chien K. Lost in translation. Nature 2004;428:607–608.

    Article  PubMed  CAS  Google Scholar 

  88. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9:1195–1201.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Mann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mann, M.J. (2011). Stem Cell Transplantation to the Heart. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_17

Download citation

Publish with us

Policies and ethics