Skip to main content

Fibril Structure and Fibrillogenesis

  • Chapter
  • First Online:

Part of the book series: Contemporary Hematology ((CH))

Abstract

Amyloid fibrils are protein aggregates with a characteristic cross-β structure found in association with many human diseases. This chapter begins with a review of some basics of protein biochemistry and the theory of amyloid formation. The rest of the chapter focuses on the biophysical understanding of amyloid formation, touching on the kinetics and thermodynamics of fibril formation, different tools that can be used to probe fibril formation, and current theories on the mechanism of fibril formation. Finally, we discuss current structural approaches for the study of amyloid fibrils and several structural models that have been proposed as a result of these studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexandrescu AT. Amyloid accomplices and enforcers. Protein Sci. 2005;14:1–12.

    Article  PubMed  CAS  Google Scholar 

  2. Anfinsen CB. Principles that govern the folding of protein chains. Science 1973;181:223–30.

    Article  PubMed  CAS  Google Scholar 

  3. Creighton TE. Proteins. New York: W.H. Freeman and Company; 1993.

    Google Scholar 

  4. Sunde M, et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol. 1997;273:729–39.

    Article  PubMed  CAS  Google Scholar 

  5. Gross M. Proteins that convert from alpha helix to beta sheet: implications for folding and disease. Curr Protein Pept Sci. 2000;1:339–47.

    Article  PubMed  CAS  Google Scholar 

  6. Kumar S, Udgaonkar JB. Conformational conversion may precede or follow aggregate elongation on alternative pathways of amyloid protofibril formation. J Mol Biol. 2009;385:1266–76.

    Article  PubMed  CAS  Google Scholar 

  7. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–66.

    Article  PubMed  CAS  Google Scholar 

  8. Sipe JD. Amyloidosis. Crit Rev Clin Lab Sci. 1994;31:325–54.

    Article  PubMed  CAS  Google Scholar 

  9. Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods. 2004;34:151–60.

    Article  PubMed  CAS  Google Scholar 

  10. Eisert R, Felau L, Brown LR. Methods for enhancing the accuracy and reproducibility of Congo red and thioflavin T assays. Anal Biochem. 2006;353:144–6.

    Article  PubMed  CAS  Google Scholar 

  11. Hawe A, Sutter M, Jiskoot W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res. 2008;25:1487–99.

    Article  PubMed  CAS  Google Scholar 

  12. Goldsbury C, Frey P, Olivieri V, Aebi U, Muller SA. Multiple assembly pathways underlie amyloid-beta fibril polymorphisms. J Mol Biol. 2005;352:282–98.

    Article  PubMed  CAS  Google Scholar 

  13. Shirahama T, Cohen AS. High-resolution electron microscopic analysis of the amyloid fibril. J Cell Biol. 1967;33:679–708.

    Article  PubMed  CAS  Google Scholar 

  14. Kodali R, Wetzel R. Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol. 2007;17:48–57.

    Article  PubMed  CAS  Google Scholar 

  15. Wetzel R. Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res. 2006;39:671–9.

    Article  PubMed  CAS  Google Scholar 

  16. Scott MR, Supattapone S, Nguyen HO, DeArmond SJ, Prusiner SB. Transgenic models of prion disease. Arch Virol Suppl. 2000;16:113–24.

    PubMed  Google Scholar 

  17. Krebs MR, Morozova-Roche LA, Daniel K, Robinson CV, Dobson CM. Observation of sequence specificity in the seeding of protein amyloid fibrils. Protein Sci. 2004;13:1933–8.

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature 2004;428:323–8.

    Article  PubMed  CAS  Google Scholar 

  19. Qin Z, Hu D, Zhu M, Fink AL. Structural characterization of the partially folded intermediates of an immunoglobulin light chain leading to amyloid fibrillation and amorphous aggregation. Biochemistry 2007;46:3521–31.

    Article  PubMed  CAS  Google Scholar 

  20. Powers ET, Powers DL. Mechanisms of protein fibril formation: nucleated polymerization with competing off-pathway aggregation. Biophys J. 2008;94:379–91.

    Article  PubMed  CAS  Google Scholar 

  21. Wright CF, Teichmann SA, Clarke J, Dobson CM. The importance of sequence diversity in the aggregation and evolution of proteins. Nature 2005;438:878–81.

    Article  PubMed  CAS  Google Scholar 

  22. Prusiner SB. Prions. Proc Natl Acad Sci USA. 1998;95:13363–83.

    Article  PubMed  CAS  Google Scholar 

  23. Kim Y, et al. Thermodynamic modulation of light chain amyloid fibril formation. J Biol Chem. 2000;275:1570–4.

    Article  PubMed  CAS  Google Scholar 

  24. Wall JS, et al. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vlambda6 proteins. J Mol Recognit. 2004;17:323–31.

    Article  PubMed  CAS  Google Scholar 

  25. Baden EM, et al. Altered dimer interface decreases stability in an amyloidogenic protein. J Biol Chem. 2008;283:15853–60.

    Article  PubMed  CAS  Google Scholar 

  26. Ramirez-Alvarado M, Merkel JS, Regan L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc Natl Acad Sci USA. 2000;97:8979–84.

    Article  PubMed  CAS  Google Scholar 

  27. Tycko R. Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys. 2006;39:1–55.

    Article  PubMed  CAS  Google Scholar 

  28. Petkova AT, Yau WM, Tycko R. Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 2006;45:498–512.

    Article  PubMed  CAS  Google Scholar 

  29. Petkova AT, et al. A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 2002;99:16742–7.

    Article  PubMed  CAS  Google Scholar 

  30. George AR, Howlett DR. Computationally derived structural models of the beta-amyloid found in Alzheimer’s disease plaques and the interaction with possible aggregation inhibitors. Biopolymers 1999;50:733–41.

    Article  PubMed  CAS  Google Scholar 

  31. Tjernberg LO, et al. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem. 1999;274:12619–25.

    Article  PubMed  CAS  Google Scholar 

  32. Chaney MO, Webster SD, Kuo YM, Roher AE. Molecular modeling of the Abeta1-42 peptide from Alzheimer’s disease. Protein Eng. 1998;11:761–67.

    Article  PubMed  CAS  Google Scholar 

  33. Jenkins J, Pickersgill R. The architecture of parallel beta-helices and related folds. Prog Biophys Mol Biol. 2001;77:111–75.

    Article  PubMed  CAS  Google Scholar 

  34. DeMarco ML, Silveira J, Caughey B, Daggett V. Structural properties of prion protein protofibrils and fibrils: an experimental assessment of atomic models. Biochemistry 2006;45:15573–82.

    Article  PubMed  CAS  Google Scholar 

  35. Govaerts C, Wille H, Prusiner SB, Cohen FE. Evidence for assembly of prions with left-handed beta-helices into trimers. Proc Natl Acad Sci USA. 2004;101:8342–7.

    Article  PubMed  CAS  Google Scholar 

  36. Perutz MF, Finch JT, Berriman J, Lesk A. Amyloid fibers are water-filled nanotubes. Proc Natl Acad Sci USA. 2002;99:5591–5.

    Article  PubMed  CAS  Google Scholar 

  37. Krishnan R, Lindquist SL. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 2005;435:765–72.

    Article  PubMed  CAS  Google Scholar 

  38. Paravastu AK, Leapman RD, Yau WM, Tycko R. Molecular structural basis for polymorphism in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA. 2008;105:18349–54.

    Article  PubMed  CAS  Google Scholar 

  39. Armen RS, Alonso DO, Daggett V. Anatomy of an amyloidogenic intermediate: conversion of beta-sheet to alpha-sheet structure in transthyretin at acidic pH. Structure 2004;12:1847–63.

    Article  PubMed  CAS  Google Scholar 

  40. Armen RS, DeMarco ML, Alonso DO, Daggett V. Pauling and Corey’s alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci USA. 2004;101:11622–7.

    Article  PubMed  CAS  Google Scholar 

  41. Balbirnie M, Grothe R, Eisenberg DS. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci USA. 2001;98:2375–80.

    Article  PubMed  CAS  Google Scholar 

  42. Thompson MJ, et al. The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci USA. 2006;103:4074–8.

    Article  PubMed  CAS  Google Scholar 

  43. Trovato A, Seno F, Tosatto SC. The PASTA server for protein aggregation prediction. Protein Eng Des Sel. 2007;20:521–3.

    Article  PubMed  CAS  Google Scholar 

  44. Galzitskaya OV, Garbuzynskiy SO, Lobanov MY. Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol. 2006;2:e177.

    Article  PubMed  Google Scholar 

  45. Tartaglia GG, et al. Prediction of aggregation-prone regions in structured proteins. J Mol Biol. 2008;380:425–36.

    Article  PubMed  CAS  Google Scholar 

  46. Nelson R, et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005;435:773–8.

    Article  PubMed  CAS  Google Scholar 

  47. Sawaya MR, et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007;447:453–7.

    Article  PubMed  CAS  Google Scholar 

  48. Ionescu-Zanetti C, et al. Monitoring the assembly of Ig light-chain amyloid fibrils by atomic force microscopy. Proc Natl Acad Sci USA. 1999;96:13175–9.

    Article  PubMed  CAS  Google Scholar 

  49. DePace AH, Weissman JS. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nat Struct Biol. 2002;9:389–96.

    PubMed  CAS  Google Scholar 

  50. Kheterpal I, Wetzel R. Hydrogen/deuterium exchange mass spectrometry—a window into amyloid structure. Acc Chem Res. 2006;39:584–93.

    Article  PubMed  CAS  Google Scholar 

  51. Kheterpal I, Williams A, Murphy C, Bledsoe B, Wetzel R. Structural features of the Abeta amyloid fibril elucidated by limited proteolysis. Biochemistry 2001;40:11757–67.

    Article  PubMed  CAS  Google Scholar 

  52. Whittemore NA, et al. Hydrogen–deuterium (H/D) exchange mapping of Abeta 1-40 amyloid fibril secondary structure using nuclear magnetic resonance spectroscopy. Biochemistry 2005;44:4434–41.

    Article  PubMed  CAS  Google Scholar 

  53. Soldi G, Bemporad F, Chiti F. The degree of structural protection at the edge beta-strands determines the pathway of amyloid formation in globular proteins. J Am Chem Soc. 2008;130:4295–302.

    Article  PubMed  CAS  Google Scholar 

  54. Richardson JS, Richardson DC. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA. 2002;99:2754–9.

    Article  PubMed  CAS  Google Scholar 

  55. Soto C, et al. Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet 2000;355:192–7.

    Article  PubMed  CAS  Google Scholar 

  56. Baden EM, Randles EG, Aboagye AK, Thompson JR, Ramirez-Alvarado M. Structural insights into the role of mutations in amyloidogenesis. J Biol Chem. 2008;283:30950–6.

    Article  PubMed  CAS  Google Scholar 

  57. Calabrese MF, Eakin CM, Wang JM, Miranker AD. A regulatable switch mediates self-association in an immunoglobulin fold. Nat Struct Mol Biol. 2008;15:965–71.

    Article  PubMed  CAS  Google Scholar 

  58. Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM. Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA. 1998;95:4224–8.

    Article  PubMed  CAS  Google Scholar 

  59. Kayed R, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300:486–9.

    Article  PubMed  CAS  Google Scholar 

  60. Bucciantini M, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002;416:507–11.

    Article  PubMed  CAS  Google Scholar 

  61. Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 2006;13:236–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Martin, D.J., Randles, E.G., Ramirez-Alvarado, M. (2010). Fibril Structure and Fibrillogenesis. In: Gertz, M., Rajkumar, S. (eds) Amyloidosis. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-631-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-631-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-630-6

  • Online ISBN: 978-1-60761-631-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics