Skip to main content

Physiological Functions of Transient Receptor Potential Channels in Pulmonary Arterial Smooth Muscle Cells

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 661))

Abstract

The transient receptor potential (TRP) gene superfamily, which consists of 7 subfamilies with at least 28 mammalian homologues, is known to encode a wide variety of cation channels with diverse biophysical properties, activation mechanisms, and physiological functions. Recent studies have identified multiple TRP channel subtypes, belonging to the canonical (TRPC), melastatin-related (TRPM), and vanilloid-related (TRPV) subfamilies, in pulmonary arterial smooth muscle cells (PASMCs). They operate as specific Ca2+ pathways responsive to stimuli, including Ca2+ store depletion, receptor activation, reactive oxygen species, growth factors, and mechanical stress. Increasing evidence suggests that these channels play crucial roles in agonist-induced pulmonary vasoconstriction, hypoxic pulmonary vasoconstriction, smooth muscle cell proliferation, vascular remodeling, and pulmonary arterial hypertension. This chapter highlighted and discussed these putative physiological functions of TRP channels in pulmonary vasculatures. Since Ca2+ ions regulate many cellular processes via specific Ca2+ signals, future investigations of these novel channels will likely uncover more important regulatory mechanisms of pulmonary vascular functions in health and in disease states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2:1313-1323

    Article  PubMed  CAS  Google Scholar 

  2. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387-417

    Article  PubMed  CAS  Google Scholar 

  3. Inoue R, Jensen LJ, Shi J et al (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119-131

    Article  PubMed  CAS  Google Scholar 

  4. Walker RL, Hume JR, Horowitz B (2001) Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol 280:C1184-C1192

    PubMed  CAS  Google Scholar 

  5. Lu W, Wang J, Shimoda LA, Sylvester JT (2008) Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 295:L104-L113

    Article  PubMed  CAS  Google Scholar 

  6. Yang XR, Lin MJ, McIntosh LS, Sham JSK (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267-L1276

    Article  PubMed  CAS  Google Scholar 

  7. Putney JW Jr, Broad LM, Braun FJ, Lievremont JP, Bird GS (2001) Mechanisms of capacitative calcium entry. J Cell Sci 114:2223-2229

    PubMed  CAS  Google Scholar 

  8. Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435-445

    Article  PubMed  CAS  Google Scholar 

  9. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131:1327-1339

    Article  PubMed  CAS  Google Scholar 

  10. McDonald TV, Premack BA, Gardner P (1993) Flash photolysis of caged inositol 1,4,5-trisphosphate activates plasma membrane calcium current in human T cells. J Biol Chem 268:3889-3896

    PubMed  CAS  Google Scholar 

  11. Abramowitz J, Birnbaumer L (2009) Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 23:297-328

    Article  PubMed  CAS  Google Scholar 

  12. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99:7461-7466

    Article  PubMed  CAS  Google Scholar 

  13. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 275:17517-17526

    Article  PubMed  CAS  Google Scholar 

  14. Huang GN, Zeng W, Kim JY et al (2006) STIM1 carboxyl-terminus activates native SOC, I CRAC and TRPC1 channels. Nat Cell Biol 8:1003-1010

    Article  PubMed  CAS  Google Scholar 

  15. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9:636-645

    Article  PubMed  CAS  Google Scholar 

  16. Lin MJ, Leung GP, Zhang WM et al (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496-505

    Article  PubMed  CAS  Google Scholar 

  17. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX-J (2002) Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283:L144-L155

    PubMed  CAS  Google Scholar 

  18. Kunichika N, Yu Y, Remillard CV, Platoshyn O, Zhang S, Yuan JX-J (2004) Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 287:L962-L969

    Article  PubMed  CAS  Google Scholar 

  19. Weissmann N, Dietrich A, Fuchs B et al (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci U S A 103:19093-19098

    Article  PubMed  CAS  Google Scholar 

  20. Liao Y, Erxleben C, Abramowitz J et al (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/I CRAC channels. Proc Natl Acad Sci U S A 105:2895-2900

    Article  PubMed  CAS  Google Scholar 

  21. Zhang S, Patel HH, Murray F et al (2007) Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 292:L1202-L1210

    Article  PubMed  CAS  Google Scholar 

  22. Zhang S, Remillard CV, Fantozzi I, Yuan JX-J (2004) ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 287:C1192-C1201

    Article  PubMed  CAS  Google Scholar 

  23. Hisatsune C, Kuroda Y, Nakamura K et al (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887-18894

    Article  PubMed  CAS  Google Scholar 

  24. Kawasaki BT, Liao Y, Birnbaumer L (2006) Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels. Proc Natl Acad Sci U S A 103:335-340

    Article  PubMed  CAS  Google Scholar 

  25. McDaniel SS, Platoshyn O, Wang J et al (2001) Capacitative Ca2+ entry in agonist-induced pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 280:L870-L880

    PubMed  CAS  Google Scholar 

  26. Doi S, Damron DS, Horibe M, Murray PA (2000) Capacitative Ca2+ entry and tyrosine kinase activation in canine pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 278:L118-L130

    PubMed  CAS  Google Scholar 

  27. Yang XR, Cao YN, Birnbaumer L, Sham JSK (2008) TRPC1 channels contributes to hypoxic pulmonary hypertension and right heart hypertrophy: evidence from TRPC1 knockout mice. Am J Respir Crit Care Med 177:A534

    Google Scholar 

  28. Dietrich A, Mederos YSM, Gollasch M et al (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980-6989

    Article  PubMed  CAS  Google Scholar 

  29. Guibert C, Marthan R, Savineau JP (2004) 5-HT induces an arachidonic acid-sensitive calcium influx in rat small intrapulmonary artery. Am J Physiol Lung Cell Mol Physiol 286:L1228-L1236

    Article  PubMed  CAS  Google Scholar 

  30. Ducret T, Guibert C, Marthan R, Savineau JP (2008) Serotonin-induced activation of TRPV4-like current in rat intrapulmonary arterial smooth muscle cells. Cell Calcium 43:315-323

    Article  PubMed  CAS  Google Scholar 

  31. Archer SL, Huang J, Henry T, Peterson D, Weir EK (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 73:1100-1112

    Article  PubMed  CAS  Google Scholar 

  32. Jabr RI, Toland H, Gelband CH, Wang XX, Hume JR (1997) Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery. Br J Pharmacol 122:21-30

    Article  PubMed  CAS  Google Scholar 

  33. Robertson TP, Hague D, Aaronson PI, Ward JP (2000) Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J Physiol 525:669-680

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, Shimoda LA, Weigand L, Wang W, Sun D, Sylvester JT (2005) Acute hypoxia increases intracellular [Ca2+] in pulmonary arterial smooth muscle by enhancing capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 288:L1059-L1069

    Article  PubMed  CAS  Google Scholar 

  35. Ng LC, Wilson SM, Hume JR (2005) Mobilization of sarcoplasmic reticulum stores by hypoxia leads to consequent activation of capacitative Ca2+ entry in isolated canine pulmonary arterial smooth muscle cells. J Physiol 563:409-419

    Article  PubMed  CAS  Google Scholar 

  36. Weigand L, Foxson J, Wang J, Shimoda LA, Sylvester JT (2005) Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol 289:L5-L13

    Article  PubMed  CAS  Google Scholar 

  37. Lu W, Wang J, Shimoda LA, Sylvester JT (2008) Knockdown of stromal interaction molecule 1 (STIM-1) decreases store-operated calcium entry (SOCE) and attenuates hypoxic calcium response in pulmonary artery smooth muscle cells (PASMC). FASEB J 22:1213.4

    Article  Google Scholar 

  38. Landsberg JW, Yuan JX-J (2004) Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci 19:44-50

    PubMed  CAS  Google Scholar 

  39. Golovina VA, Platoshyn O, Bailey CL et al (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746-H755

    PubMed  CAS  Google Scholar 

  40. Yu Y, Sweeney M, Zhang S et al (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284:C316-C330

    PubMed  CAS  Google Scholar 

  41. Kunichika N, Landsberg JW, Yu Y et al (2004) Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am J Respir Crit Care Med 170:1101-1107

    Article  PubMed  Google Scholar 

  42. Dolmetsch R (2003) Excitation-transcription coupling: signaling by ion channels to the nucleus. Sci STKE 2003:PE4

    Google Scholar 

  43. Shimoda LA, Sham JSK, Shimoda TH, Sylvester JT (2000) L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279:L884-L894

    PubMed  CAS  Google Scholar 

  44. Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528-1537

    Article  PubMed  CAS  Google Scholar 

  45. Yang XR, Hughes JM, Cao YN, Flavahan NA, Liedtke W, Sham JSK (2008) Upregulation of TRPV4 channels in pulmonary arteries (PAs) contribute to chronic hypoxia induced myogenic tone and pulmonary hypertension. FASEB J 22:1213.5 (abstract)

    Google Scholar 

  46. Yu Y, Fantozzi I, Remillard CV et al (2004) Enhanced expression of transient abstract receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci U S A 101:13861-13866

    Article  PubMed  CAS  Google Scholar 

  47. Ng LC, Gurney AM (2001) Store-operated channels mediate Ca2+ influx and contraction in rat pulmonary artery. Circ Res 89:923-929

    Article  PubMed  CAS  Google Scholar 

  48. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848-L858

    Article  PubMed  CAS  Google Scholar 

  49. McElroy SP, Gurney AM, Drummond RM (2008) Pharmacological profile of store-operated Ca2+ entry in intrapulmonary artery smooth muscle cells. Eur J Pharmacol 584:10-20

    Article  PubMed  CAS  Google Scholar 

  50. Rodat L, Savineau JP, Marthan R, Guibert C (2007) Effect of chronic hypoxia on voltage-independent calcium influx activated by 5-HT in rat intrapulmonary arteries. Pflügers Arch 454:41-51

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. K. Sham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Yang, XR., Lin, MJ., Sham, J.S.K. (2010). Physiological Functions of Transient Receptor Potential Channels in Pulmonary Arterial Smooth Muscle Cells. In: Yuan, JJ., Ward, J. (eds) Membrane Receptors, Channels and Transporters in Pulmonary Circulation. Advances in Experimental Medicine and Biology, vol 661. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-500-2_7

Download citation

Publish with us

Policies and ethics