Skip to main content

Immunohistochemical Profiling of Lymphoma

  • Chapter
  • First Online:
Neoplastic Hematopathology

Part of the book series: Contemporary Hematology ((CH))

  • 2245 Accesses

Abstract/Scope of Chapter

This chapter covers the technique of immunostaining for the characterization of lymphoma and hematopoietic tumors in tissues. The range of markers that may be diagnostically useful is discussed, as are the methodologic issues related to new marker identification, reagent validation, standardization and quantitation of staining levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coons AH, Kaplan MH. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 1950;91:1-13.

    Article  PubMed  CAS  Google Scholar 

  2. Schmalstieg FC Jr, Goldman AS, Ilya Ilich Metchnikoff (1845-1915) and Paul Ehrlich (1854-1915): the centennial of the 1908 Nobel Prize in Physiology or Medicine. J Med Biogr 2008;16:96-103.

    PubMed  Google Scholar 

  3. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495-7.

    Article  PubMed  CAS  Google Scholar 

  4. Nakane PK, Pierce GB Jr. Enzyme-labeled antibodies for the light and electron microscopic localization of tissue antigens. J Cell Biol 1967;33:307-18.

    Article  PubMed  CAS  Google Scholar 

  5. Avrameas S. Enzyme markers: their linkage with proteins and use in immuno-histochemistry. Histochem J 1972;4:321-30.

    Article  PubMed  CAS  Google Scholar 

  6. Warnke RA, Gatter KC, Falini B, et al. Diagnosis of human lymphoma with monoclonal antileukocyte antibodies. N Engl J Med 1983;309:1275-81.

    Article  PubMed  CAS  Google Scholar 

  7. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC, 2008.

    Google Scholar 

  8. Natkunam Y, van De Rijn M. The use of gene expression arrays and high density tissue microarrays in the study of hematolymphoid malignancies. Histopathology 2002;41:520-5.

    Google Scholar 

  9. Natkunam Y, Mason DY. Prognostic immunohistologic markers in human tumors: why are so few used in clinical practice? Lab Invest 2006;86:742-7.

    Article  PubMed  CAS  Google Scholar 

  10. Zu Y, Steinberg SM, Campo E, et al. Validation of tissue microarray immunohistochemistry staining and interpretation in diffuse large B-cell lymphoma. Leuk Lymphoma 2005;46:693-701.

    Article  PubMed  CAS  Google Scholar 

  11. de Jong D, Rosenwald A, Chhanabhai M, et al. Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications-a study from the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol 2007;25:805-12.

    Article  PubMed  Google Scholar 

  12. Henry NL, Hayes DF. Uses and abuses of tumor markers in the diagnosis, monitoring, and treatment of primary and metastatic breast cancer. Oncologist 2006;11:541-52.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor CR, Shi S, Barr NJ, Wu N. Techniques of immunohistochemistry: principals, pitfalls, and standardization. In: Dabbs DJ (eds.), Diagnostic Immunohistochemistry, Churchill Livingston, 2nd Edition, 2002; 3-43.

    Google Scholar 

  14. Popkov M, Mage RG, Alexander CB, Thundivalappil S, Barbas CF 3 rd, Rader C. Rabbit immune repertoires as sources for therapeutic monoclonal antibodies: the impact of kappa allotype-correlated variation in cysteine content on antibody libraries selected by phage display. J Mol Biol 2003;325:325-35.

    Article  PubMed  CAS  Google Scholar 

  15. Cheuk W, Wong KO, Wong CS, Chan JK. Consistent immunostaining for cyclin D1 can be achieved on a routine basis using a newly available rabbit monoclonal antibody. Am J Surg Pathol 2004;28:801-7.

    Article  PubMed  Google Scholar 

  16. Cordell JL, Falini B, Erber WN, et al. Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes). J Histochem Cytochem 1984;32:219-29.

    Article  PubMed  CAS  Google Scholar 

  17. Hsu SM, Raine L, Fanger H. A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol 1981;75:734-8.

    PubMed  CAS  Google Scholar 

  18. Adams JC. Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 1992;40:1457-63.

    Article  PubMed  CAS  Google Scholar 

  19. Sabattini E, Bisgaard K, Ascani S, et al. The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol 1998;51:506-11.

    Article  PubMed  CAS  Google Scholar 

  20. Vyberg M, Nielsen S. Dextran polymer conjugate two-step visualization system for immunohistochemistry. Appl Immunohistochem 1998;6:3.

    Article  CAS  Google Scholar 

  21. Marafioti T, Jones M, Facchetti F, et al. Phenotype and genotype of interfollicular large B cells, a subpopulation of lymphocytes often with dendritic morphology. Blood 2003;102:2868-76.

    Article  PubMed  CAS  Google Scholar 

  22. Mason DY, Micklem K, Jones M. Double immunofluorescence labelling of routinely processed paraffin sections. J Pathol 2000;191:452-61.

    Article  PubMed  CAS  Google Scholar 

  23. Natkunam Y, Lossos IS, Taidi B, et al. Expression of the human germinal center-associated lymphoma (HGAL) protein, a new marker of germinal center B-cell derivation. Blood 2005;105:3979-86.

    Article  PubMed  CAS  Google Scholar 

  24. Natkunam Y, Zhao S, Mason DY, et al. The oncoprotein LMO2 is expressed in normal germinal-center B cells and in human B-cell lymphomas. Blood 2007;109:1636-42.

    Article  PubMed  CAS  Google Scholar 

  25. Roncador G, Garcia Verdes-Montenegro JF, Tedoldi S, et al. Expression of two markers of germinal center T cells (SAP and PD-1) in angioimmunoblastic T-cell lymphoma. Haematologica 2007;92:1059-66.

    Article  PubMed  CAS  Google Scholar 

  26. Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 2006;30:802-10.

    Article  PubMed  Google Scholar 

  27. Grogg KL, Attygalle AD, Macon WR, Remstein ED, Kurtin PJ, Dogan A. Expression of CXCL13, a chemokine highly upregulated in germinal center T-helper cells, distinguishes angioimmunoblastic T-cell lymphoma from peripheral T-cell lymphoma, unspecified. Mod Pathol 2006;19:1101-7.

    PubMed  CAS  Google Scholar 

  28. McCune RC, Syrbu SI, Vasef MA. Expression profiling of transcription factors Pax-5, Oct-1, Oct-2, BOB.1, and PU.1 in Hodgkin’s and non-Hodgkin’s lymphomas: a comparative study using high throughput tissue microarrays. Mod Pathol 2006;19:1010-8.

    Article  PubMed  CAS  Google Scholar 

  29. Loddenkemper C, Anagnostopoulos I, Hummel M, et al. Differential Emu enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas. J Pathol 2004;202:60-9.

    Article  PubMed  CAS  Google Scholar 

  30. Schwering I, Brauninger A, Klein U, et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2003;101:1505-12.

    Article  PubMed  CAS  Google Scholar 

  31. Pulford K, Lamant L, Morris SW, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 1997;89:1394-404.

    PubMed  CAS  Google Scholar 

  32. Schnittger S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005;106:3733-9.

    Article  PubMed  CAS  Google Scholar 

  33. Noguera NI, Ammatuna E, Zangrilli D, et al. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia 2005;19:1479-82.

    Article  PubMed  CAS  Google Scholar 

  34. Cazzaniga G, Dell’Oro MG, Mecucci C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 2005;106:1419-22.

    Article  PubMed  CAS  Google Scholar 

  35. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503-11.

    Article  PubMed  CAS  Google Scholar 

  36. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002;346:1937-47.

    Article  PubMed  Google Scholar 

  37. Monti S, Savage KJ, Kutok JL, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005;105:1851-61.

    Article  PubMed  CAS  Google Scholar 

  38. Tedoldi S, Paterson J, Cordell J, et al. Jaw1/LRMP, a germinal centre-associated marker for the immunohistological study of B-cell lymphomas. J Pathol 2006;209:454-63.

    Google Scholar 

  39. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008;359:2313-23.

    Article  PubMed  CAS  Google Scholar 

  40. Lossos IS, Czerwinski DK, Alizadeh AA, et al. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 2004;350:1828-37.

    Article  PubMed  CAS  Google Scholar 

  41. Lu X, Malumbres R, Shields B, et al. PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood 2008;112:4098-108.

    Article  PubMed  CAS  Google Scholar 

  42. Gratzinger D, Zhao S, Tibshirani RJ, et al. Prognostic significance of VEGF, VEGF receptors, and microvessel density in diffuse large B cell lymphoma treated with anthracycline-based chemotherapy. Lab Invest 2008;88:38-47.

    Article  PubMed  CAS  Google Scholar 

  43. Gratzinger D, Zhao S, Marinelli RJ, et al. Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes. Am J Pathol 2007;170:1362-9.

    Article  PubMed  CAS  Google Scholar 

  44. Gascoyne RD, Lamant L, Martin-Subero JI, et al. ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. Blood 2003;102:2568-73.

    Article  PubMed  CAS  Google Scholar 

  45. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346:235-42.

    Article  PubMed  CAS  Google Scholar 

  46. Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 2006;24:3121-7.

    Article  PubMed  CAS  Google Scholar 

  47. Pfreundschuh M, Trumper L, Osterborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 2006;7:379-91.

    Article  PubMed  CAS  Google Scholar 

  48. Sehn LH, Donaldson J, Chhanabhai M, et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol 2005;23:5027-33.

    Article  PubMed  CAS  Google Scholar 

  49. Irish JM, Czerwinski DK, Nolan GP, Levy R. Kinetics of B cell receptor signaling in human B-cell subsets mapped by phosphospecific flow cytometry. J Immunol 2006;177:1581-9.

    PubMed  CAS  Google Scholar 

  50. Elenitoba-Johnson KS, Crockett DK, Schumacher JA, et al. Proteomic identification of oncogenic chromosomal translocation partners encoding chimeric anaplastic lymphoma kinase fusion proteins. Proc Natl Acad Sci U S A 2006;103:7402-7.

    Article  PubMed  CAS  Google Scholar 

  51. Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med 2005;2:e284.

    Article  PubMed  Google Scholar 

  52. Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998;4:844-7.

    Article  PubMed  CAS  Google Scholar 

  53. Marinelli RJ, Montgomery K, Liu CL, et al. The Stanford tissue microarray database. Nucleic Acids Res 2008;36:D871-7.

    Article  PubMed  CAS  Google Scholar 

  54. Uhlen M, Bjorling E, Agaton C, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 2005;4:1920-32.

    Article  PubMed  CAS  Google Scholar 

  55. Vyberg M, Torlakovic E, Seidal T, Risberg B, Helin H, Nielsen S. Nordic immunohistochemical quality control. Croat Med J 2005;46:368-71.

    PubMed  Google Scholar 

  56. Liu CL, Montgomery KD, Natkunam Y, et al. TMA-Combiner, a simple software tool to permit analysis of replicate cores on tissue microarrays. Mod Pathol 2005;18:1641-1648.

    PubMed  CAS  Google Scholar 

  57. Liu CL, Prapong W, Natkunam Y, et al. Software tools for high-throughput analysis and archiving of immunohistochemistry staining data obtained with tissue microarrays. Am J Pathol 2002;161:1557-65.

    Article  PubMed  CAS  Google Scholar 

  58. Hazard F, Zhao S, Schiffman J, Lacayo N, Dahl G, Natkunam Y. Tissue microarrays from bone marrow aspirates for high throughput assessment of immunohistologic markers in pediatric acute leukemia. Pediatr Dev Pathol 2007;1.

    Google Scholar 

  59. Montgomery K, Zhao S, van de Rijn M, Natkunam Y. A novel method for making “tissue” microarrays from small numbers of suspension cells. Appl Immunohistochem Mol Morphol 2005;13:80-4.

    Article  PubMed  CAS  Google Scholar 

  60. Robertson D, Savage K, Reis-Filho JS, Isacke CM. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biol 2008;9:13.

    Article  PubMed  Google Scholar 

  61. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013-6.

    Article  PubMed  CAS  Google Scholar 

  62. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998;281:2016-8.

    Article  PubMed  CAS  Google Scholar 

  63. Tholouli E, Sweeney E, Barrow E, Clay V, Hoyland JA, Byers RJ. Quantum dots light up pathology. J Pathol 2008;216:275-85.

    Article  PubMed  CAS  Google Scholar 

  64. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 2006;19:1181-91.

    Article  PubMed  CAS  Google Scholar 

  65. Englert CR, Baibakov GV, Emmert-Buck MR. Layered expression scanning: rapid molecular profiling of tumor samples. Cancer Res 2000;60:1526-30.

    PubMed  CAS  Google Scholar 

  66. Gannot G, Tangrea MA, Erickson HS, et al. Layered peptide array for multiplex immunohistochemistry. J Mol Diagn 2007;9:297-304.

    Article  PubMed  CAS  Google Scholar 

  67. Cregger M, Berger AJ, Rimm DL. Immunohistochemistry and quantitative analysis of protein expression. Arch Pathol Lab Med 2006;130:1026-30.

    PubMed  CAS  Google Scholar 

  68. Camp RL, Chung GG, Rimm DL. Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 2002;8:1323-7.

    Article  PubMed  CAS  Google Scholar 

  69. Gustavson MD, Molinaro AM, Tedeschi G, Camp RL, Rimm DL. AQUA analysis of thymidylate synthase reveals localization to be a key prognostic biomarker in 2 large cohorts of colorectal carcinoma. Arch Pathol Lab Med 2008;132:1746-52.

    PubMed  Google Scholar 

  70. Harnett MM. Laser scanning cytometry: understanding the immune system in situ. Nat Rev Immunol 2007;7:897-904.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasodha Natkunam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anderson, M.W., Natkunam, Y. (2010). Immunohistochemical Profiling of Lymphoma. In: Jones, D. (eds) Neoplastic Hematopathology. Contemporary Hematology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-384-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-384-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-383-1

  • Online ISBN: 978-1-60761-384-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics