Skip to main content

Adult Cell Reprogramming: Using Nonpancreatic Cell Sources to Generate Surrogate Beta Cells for Treatment of Diabetes

  • Chapter
  • First Online:
Stem Cell Therapy for Diabetes

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1329 Accesses

Abstract

Regenerative medicine is designed to produce new cells for repair or replacement of diseased and damaged tissues. Embryonic and adult stem cells have been suggested as attractive sources for generation of new differentiated cells. The leading dogma has maintained that once animal cells are committed to a specific lineage, they become “terminally differentiated” and can no longer change their fate. However, in recent years increasing evidence has demonstrated the remarkable ability of some differentiated cells to convert into a different cell type via a process termed developmental redirection or nuclear reprogramming. For example, abundant human cell types, such as dermal fibroblasts and adipocytes, could potentially be harvested and converted into other, medically important cell types, such as neurons, cardiomyocytes, or pancreatic β cells. In this chapter we review the potential use of adult tissue, specifically liver and bone marrow, to provide a source of tissue for generating functional insulin-producing cells. This approach might generate custom-made autologous surrogate β cells for treatment of diabetes and possibly circumvent both the shortage of cadaveric human donor tissue and the need for life-long immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrali SS, Sampley ML, Vanderford NL et al. (2008) Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J 415:1–10

    Article  CAS  PubMed  Google Scholar 

  • Baeyens L, De Breuck S, Lardon J et al. (2005) In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48:49–57

    Article  CAS  PubMed  Google Scholar 

  • Becker TC, Noel RJ, Coats WS et al. (1994) Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol 43:161–189

    Article  CAS  PubMed  Google Scholar 

  • Ber I, Shternhall K, Perl S et al. (2003) Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem 278:31950–31957

    Article  CAS  PubMed  Google Scholar 

  • Bernardo AS, Hay CW, Docherty K (2008) Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic beta cell. Mol Cell Endocrinol 294:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Inada A, Yatoh S et al. (2008) Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochem Soc Trans 36:353–356

    Article  CAS  PubMed  Google Scholar 

  • Boukamp P, Chen J, Gonzales F et al. (1992) Progressive stages of “transdifferentiation” from epidermal to mesenchymal phenotype induced by MyoD1 transfection, 5-aza-2'-deoxycytidine treatment, and selection for reduced cell attachment in the human keratinocyte line HaCaT. J Cell Biol 116:1257–1271

    Article  CAS  PubMed  Google Scholar 

  • Cao LZ, Tang DQ, Horb ME et al. (2004) High glucose is necessary for complete maturation of Pdx1-VP16-expressing hepatic cells into functional insulin-producing cells. Diabetes 53:3168–3178

    Article  CAS  PubMed  Google Scholar 

  • Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 10:3016–3020

    CAS  PubMed  Google Scholar 

  • Choi JB, Uchino H, Azuma K et al. (2003) Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 46:1366–13674

    Article  CAS  PubMed  Google Scholar 

  • Demeterco C, Beattie GM, Dib SA et al. (2000) A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth. J Clin Endocrinol Metab 85:3892–3897

    Article  CAS  PubMed  Google Scholar 

  • Desmet VJ (2001) Organization principles. In: Arias IM, Boyer JL, Chisari FV et al. (eds) The Liver: Biology and Pathobiology, Lippincott, Williams and Wilkins

    Google Scholar 

  • Deutsch G, Jung J, Zheng M et al. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128:871–881

    CAS  PubMed  Google Scholar 

  • Dutta S, Gannon M, Peer B et al. (2001) PDX:PBX complexes are required for normal proliferation of pancreatic cells during development. Proc Natl Acad Sci USA 98:1065–1070

    Article  CAS  PubMed  Google Scholar 

  • Eberhard D, Tosh D (2008) Transdifferentiation and metaplasia as a paradigm for understanding development and disease. Cell Mol Life Sci 65:33–40

    Article  CAS  PubMed  Google Scholar 

  • Edlund H (2002) Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat Rev Genet 3:524–532

    Article  CAS  PubMed  Google Scholar 

  • Fausto N (2004) Hepatic differentiation potential of commercially available human mesenchymal stem cells. Tissue Eng 12:3477–3485

    Google Scholar 

  • Ferber S (2000) Can we create new organs from our own tissues? Isr Med Assoc J 2:32–36

    PubMed  Google Scholar 

  • Ferber S, Halkin A, Cohen H et al. (2000) Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6:568–572

    Article  CAS  PubMed  Google Scholar 

  • Fodor A, Harel C, Fodor L et al. (2007) Adult rat liver cells transdifferentiated with lentiviral IPF1 vectors reverse diabetes in mice: an ex vivo gene therapy approach. Diabetologia 50:121–130

    Article  CAS  PubMed  Google Scholar 

  • Hall DB, Struhl K (2002) The VP16 activation domain interacts with multiple transcriptional components as determined by protein-protein cross-linking in vivo. J Biol Chem 277:46043–46050

    Article  CAS  PubMed  Google Scholar 

  • Heavey B, Charalambous C, Cobaleda C et al. (2003) Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPalpha and GATA factors. EMBO J 22:3887–3897

    Article  CAS  PubMed  Google Scholar 

  • Hess D, Li L, Martin M et al. (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:63–70

    Article  CAS  Google Scholar 

  • Horb ME, Shen CN, Tosh D et al. (2003) Experimental conversion of liver to pancreas. Curr Biol 13:105–115

    Article  CAS  PubMed  Google Scholar 

  • Ianus A, Holz GG, Theise ND et al. (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850

    CAS  PubMed  Google Scholar 

  • Imai J, Katagiri H, Yamada T et al. (2005) Constitutively active PDX1 induced efficient insulin production in adult murine liver. Biochem Biophys Res Commun 326:402–409

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Hayashi T, Kuroiwa A et al. (1999) Lens formation by pigmented epithelial cell reaggregate from dorsal iris implanted into limb blastema in the adult newt. Dev Growth Differ 41:429–440

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  • Jin CX, Li WL, Xu F et al. (2007) Conversion of immortal liver progenitor cells into pancreatic endocrine progenitor cells by persistent expression of PDX1. J Cell Biochem 104:224–236

    Article  CAS  Google Scholar 

  • Jonsson J, Carlsson L, Edlund T et al. (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371:606–609

    Article  CAS  PubMed  Google Scholar 

  • Kaneto H, Matsuoka TA, Nakatani Y et al. (2005a) A crucial role of MafA as a novel therapeutic target for diabetes. J Biol Chem 280:15047–15052

    Article  CAS  PubMed  Google Scholar 

  • Kaneto H, Nakatani Y, Miyatsuka T et al .(2005b) PDX1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54:1009–1022

    Article  CAS  PubMed  Google Scholar 

  • Kaneto H, Matsuoka TA, Miyatsuka T et al. (2008) PDX1 functions as a master factor in the pancreas. Front Biosci 13:6406–6420

    Article  CAS  PubMed  Google Scholar 

  • Karnieli O, Izhar-Prato Y, Bulvik S et al. (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25: 2837–2844

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Mizuguchi T, Kikkawa Y et al. (2008) In vitro transformation of adult rat hepatic progenitor cells into pancreatic endocrine hormone-producing cells. J Hepatobiliary Pancreat Surg 15:310–317

    Article  PubMed  Google Scholar 

  • Kito H, Ose Y, Mizuhira V et al. (1982) Separation and purification of (Cd, Cu, Zn)-metallothionein in carp hepato-pancreas. Comp Biochem Physiol C 73:121–127

    Article  CAS  PubMed  Google Scholar 

  • Koizumi M, Doi R, Toyoda E et al. (2004) Hepatic regeneration and enforced PDX1 expression accelerate transdifferentiation in liver. Surgery 136:449–457

    Article  PubMed  Google Scholar 

  • Kojima H, Fujimiya M, Matsumura K et al. (2003) NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 9:596–603

    Article  CAS  PubMed  Google Scholar 

  • Kojima H, Fujimiya M, Matsumura K et al. (2004) Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci USA 101:2458–2463

    Article  CAS  PubMed  Google Scholar 

  • Koya V, Lu S, Sun YP et al. (2008) Reversal of streptozotocin-induced diabetes in mice by cellular transduction with recombinant pancreatic transcription factor pancreatic duodenal homeobox-1: a novel protein transduction domain-based therapy. Diabetes 57:757–769

    Article  CAS  PubMed  Google Scholar 

  • Krause DS, Theise ND, Collector MI et al. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  CAS  PubMed  Google Scholar 

  • Lechner A, Yang YG, Blacken RA et al. (2004) No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes 53:616–623

    Article  CAS  PubMed  Google Scholar 

  • Li WC, Horb ME, Tosh D et al. (2005) In vitro transdifferentiation of hepatoma cells into functional pancreatic cells. Mech Dev 122:835–847

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang R, Qiao H et al. (2007) Generation of insulin-producing cells from PDX1 gene-modified human mesenchymal stem cells. J Cell Physiol 211:36–44

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Wang WP, Wang XF et al. (2005) Heterogeneity in predisposition of hepatic cells to be induced into pancreatic endocrine cells by PDX1. World J Gastroenterol 11:2277–2282

    CAS  PubMed  Google Scholar 

  • Lundstrom K (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21:117–122

    Article  CAS  PubMed  Google Scholar 

  • Makarev E, Call MK, Grogg MW et al. (2007) Gene expression signatures in the newt irises during lens regeneration. FEBS Lett 581:1865–1870

    Article  CAS  PubMed  Google Scholar 

  • Mathews V, Hanson PT, Ford E et al. (2004) Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53:91–98

    Article  CAS  PubMed  Google Scholar 

  • Meivar-Levy I, and Ferber S (2006) Regenerative medicine: using liver to generate pancreas for treating diabetes. Isr Med Assoc J 8:430–434

    PubMed  Google Scholar 

  • Meivar-Levy I, Sapir T, Gefen-Halevi S et al. (2007) Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein beta. Hepatology 46:898–905

    Article  CAS  PubMed  Google Scholar 

  • Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45:309–326

    Article  CAS  PubMed  Google Scholar 

  • Memedula S, Belmont AS (2003) Sequential recruitment of HAT and SWI/SNF components to condensed chromatin by VP16. Curr Biol 13:241–246

    Article  CAS  PubMed  Google Scholar 

  • Miller CP, McGehee RE Jr, Habener JF (1994) IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. Embo J 13:1145–1156

    CAS  PubMed  Google Scholar 

  • Minami K, Okuno M, Miyawaki K et al. (2005) Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc Natl Acad Sci USA 102:15116–15121

    Article  CAS  PubMed  Google Scholar 

  • Miyatsuka T, Kaneto H, Kajimoto Y et al. (2003) Ectopically expressed PDX1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem Biophys Res Commun 310:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Moriscot C, de Fraipont F, Richard MJ et al. (2005) Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells 23:594–603

    Article  CAS  PubMed  Google Scholar 

  • Nakajima-Nagata N, Sakurai T, Mitaka T et al. (2004) In vitro induction of adult hepatic progenitor cells into insulin-producing cells. Biochem Biophys Res Commun 318:625–630

    Article  CAS  PubMed  Google Scholar 

  • Newsome PN, Johannessen I, Boyle S et al. (2003) Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 124:1891–1900

    Article  PubMed  Google Scholar 

  • Offield MF, Jetton TL, Labosky PA et al. (1996) PDX1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122:983–985

    CAS  PubMed  Google Scholar 

  • Ong SY, Dai H, Leong KW (2006) Hepatic differentiation potential of commercially available human mesenchymal stem cells. Tissue Eng 12:3477–3485

    Article  CAS  PubMed  Google Scholar 

  • Otsuka M, Hoshida Y, Kato N et al. (2003) Liver chip and gene shaving. J Gastroenterol 38:89–92

    CAS  PubMed  Google Scholar 

  • Pearl EJ, Horb ME (2008) Promoting ectopic pancreatic fates: pancreas development and future diabetes therapies. Clin Genet 74:316–324

    Article  CAS  PubMed  Google Scholar 

  • Rao MS, Reddy JK (1995) Hepatic transdifferentiation in the pancreas. Semin Cell Biol 6:151–156

    Article  CAS  PubMed  Google Scholar 

  • Sapir T, Shternhall K, Meivar-Levy I et al. (2005) From the cover: cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 102:7964–7969

    Article  CAS  PubMed  Google Scholar 

  • Schnedl WJ, Ferber S, Johnson JH et al. (1994) STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes 43:1326–1333

    Article  CAS  PubMed  Google Scholar 

  • Shen CN, Slack JM, Tosh D (2000) Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2:879–888

    Article  CAS  PubMed  Google Scholar 

  • Shternhall-Ron K, Quintana FJ, Perl S et al. (2007) Ectopic PDX1 expression in liver ameliorates type 1 diabetes. J Autoimmun 28:134–142

    Article  CAS  PubMed  Google Scholar 

  • Slack JM, Tosh D (2001) Transdifferentiation and metaplasia—switching cell types. Curr Opin Genet Dev 11:581–586

    Article  CAS  PubMed  Google Scholar 

  • Song YD, Lee EJ, Yashar P et al. (2007) Islet cell differentiation in liver by combinatorial expression of transcription factors neurogenin-3, BETA2, and RIPE3b1. Biochem Biophys Res Commun 354:334–339

    Article  CAS  PubMed  Google Scholar 

  • St-Onge L, Wehr R, Gruss P (1999) Pancreas development and diabetes. Curr Opin Genet Dev 9:295–300

    Article  CAS  PubMed  Google Scholar 

  • Stoffers DA, Ferrer J, Clarke WL et al. (1997) Early onset type-II diabetes mellitus (MODY 4) linked to IPF1. Nat Genet 17:138–139

    Article  CAS  PubMed  Google Scholar 

  • Tabiin MT, Tuch BE, Bai L et al. (2001) Susceptibility of insulin-secreting hepatocytes to the toxicity of pro-inflammatory cytokines. J Autoimmun 17:229–242

    Article  CAS  PubMed  Google Scholar 

  • Tang DQ, Cao LZ, Burkhardt BR et al. (2004) In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Tang DQ, Cao LZ, Chou W et al. (2006a) Role of Pax4 in Pdx1-VP16-mediated liver-to-endocrine pancreas transdifferentiation. Lab Invest. 86:829–841

    Article  CAS  PubMed  Google Scholar 

  • Tang DQ, Lu S, Sun YP et al. (2006b) Reprogramming liver-stem WB cells into functional insulin-producing cells by persistent expression of Pdx1- and Pdx1-VP16 mediated by lentiviral vectors. Lab Invest 86:83–93

    Article  CAS  PubMed  Google Scholar 

  • Tarpin M, Gehring WJ, Bierne J (2002) Conversion of a postocellar into an ocellar region as a transdetermination event occurring in adult ribbonworms. Mech Dev 118:39–44

    Article  CAS  PubMed  Google Scholar 

  • Thorgeirsson SS (1996) Hepatic stem cells in liver regeneration. Faseb J 10:1249–1256

    CAS  PubMed  Google Scholar 

  • Tsonis PA (2007) Regeneration via transdifferentiation: the lens and hair cells. Hear Res 227:28–31

    Article  CAS  PubMed  Google Scholar 

  • Tumbar T, Sudlow G, and Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145:1341–1354

    Article  CAS  PubMed  Google Scholar 

  • Waeber G, Thompson N, Nicod P et al. (1996) Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol 10:1327–1334

    Article  CAS  PubMed  Google Scholar 

  • Walther W, Stein U (2000) Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60:249–271

    Article  CAS  PubMed  Google Scholar 

  • Wang AY, Ehrhardt A, Xu H et al. (2007) Adenovirus transduction is rquired for the correction of diabetes using PDX1 or neurogenin-3 in the liver. Mol Ther 15:255–263

    Article  CAS  PubMed  Google Scholar 

  • Watada H, Kajimoto Y, Miyagawa J et al. (1996a) PDX1 induces insulin and glucokinase gene expressions in alphaTC1 clone 6 cells in the presence of betacellulin. Diabetes 45:1826–1831

    Article  CAS  PubMed  Google Scholar 

  • Watada H, Kajimoto Y, Umayahara Y et al. (1996b) The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX1 in its activation in HIT-T15 cells. Diabetes 45:1478–1488

    Article  CAS  PubMed  Google Scholar 

  • Weintraub H, Tapscott SJ, Davis RL et al. (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86:5434–5438

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Yamamoto Y, Nagasawa M et al. (2006) In vitro transdifferentiation of mature hepatocytes into insulin-producing cells. Endocr J 53:789–795

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Morrison CM, Conlon JM et al. (1999) Immunocytochemical characterization of the pancreatic islet cells of the Nile Tilapia (Oreochromis niloticus). Gen Comp Endocrinol 114:47–56

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Li S, Hatch H et al. (2002) In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA 99:8078–8083

    Article  CAS  PubMed  Google Scholar 

  • Yatoh S, Akashi T, Chan PP et al. (2006) NeuroD and reaggregation induce beta-cell specific gene expression in cultured hepatocytes. Diabetes Metab Res Rev 23:239–249

    Article  CAS  Google Scholar 

  • Young LS, Searle PF, Onion D et al. (2006) Viral gene therapy strategies: from basic science to clinical application. J Pathol. 208:299–318

    Article  CAS  PubMed  Google Scholar 

  • Zalzman M, Gupta S, Giri RK et al. (2003) Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc Natl Acad Sci USA 100:7253–7258

    Article  CAS  PubMed  Google Scholar 

  • Zalzman M, Anker-Kitai L, Efrat S (2005) Differentiation of human liver-derived, insulin-producing cells toward the beta-cell phenotype. Diabetes 54:2568–2575

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Melton DA (2008) Extreme makeover: converting one cell into another. Cell Stem Cell 3:382–388

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Brown J, Kanarek A et al. (2008) In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455:627–632

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irit Meivar-Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meivar-Levy, I., Aviv, V., Ferber, S. (2010). Adult Cell Reprogramming: Using Nonpancreatic Cell Sources to Generate Surrogate Beta Cells for Treatment of Diabetes. In: Efrat, S. (eds) Stem Cell Therapy for Diabetes. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-366-4_9

Download citation

Publish with us

Policies and ethics