Skip to main content

Pancreas and Islet Development

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The development of the pancreas and the pancreatic islets has been an area of particular scientific interest over the last several years as our attention has turned toward the possible engineering of progenitor cells and stem cells into pancreatic β cells and pancreatic islets. Pancreatic development is a highly complex process in which two morphologically distinct tissue types must derive from one simple epithelium. Although the parent endoderm from which the exocrine tissue (including acinar cells, centroacinar cells, and ducts) and the endocrine islets are derived appears to be homogeneous, it is clear that there are selected cells within the early endoderm that are destined to become either endocrine or nonendocrine lineages. The identification of these cells and the processes that determine whether or not they will become islets is of paramount importance to the engineering of stem cells into β cells. Moreover, there is a repertoire of events that allows these endocrine progenitor cells to disconnect from the epithelial lining during development. In this chapter we discuss the various key elements of basic pancreatic development. Specifically, we focus on the intercellular factors, such as growth factors, that may influence these developmental processes, as well as the important known intracellular transcription factors, which have been shown to establish a developmental hierarchy that determines lineage selection and cell fate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afelik S, Chen Y, Pieler T. (2006) Combined ectopic expression of Pdx1 and Ptf1a/p48 results in the stable conversion of posterior endoderm into endocrine and exocrine pancreatic tissue. Genes Dev. 20:1441–1446.

    CAS  PubMed  Google Scholar 

  • Ahlgren U, Jonsson J, Edlund H. (1996) The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development. 122:1409–1416.

    CAS  PubMed  Google Scholar 

  • Ahlgren U, Pfaff SL, Jessell TM, et al. (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 385:257–260.

    CAS  PubMed  Google Scholar 

  • Akiyama H, Kim JE, Nakashima K, et al. (2005) Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci USA. 102:14665–14670.

    CAS  PubMed  Google Scholar 

  • Anastasi E, Santangelo C, Bulotta A, et al. (2005) The acquisition of an insulin-secreting phenotype by HGF-treated rat pancreatic ductal cells (ARIP) is associated with the development of susceptibility to cytokine-induced apoptosis. J Mol Endocrinol. 34:367–376.

    CAS  PubMed  Google Scholar 

  • Apelqvist A, Li H, Sommer L, Beatus P, et al. (1999) Notch signaling controls pancreatic cell differentiation. Nature. 400:877–881.

    CAS  PubMed  Google Scholar 

  • Artner I, Blanchi B, Raum JC, et al. (2007) MafB is required for islet β cell maturation. Proc Natl Acad Sci USA. 104:3853–3858.

    CAS  PubMed  Google Scholar 

  • Artner I, Le Lay J, Hang Y, et al. (2006) MafB: an activator of the glucagon gene expressed in developing islet alpha- and β-cells. Diabetes. 55:297–304.

    CAS  PubMed  Google Scholar 

  • Asayesh A, Sharpe J, Watson RP, et al. (2006) Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1-/- mice. Genes Dev. 20:2208–2213.

    CAS  PubMed  Google Scholar 

  • Barbacci E, Chalkiadaki A, Masdeu C, et al. (2004) HNF1β/TCF2 mutations impair transactivation potential through altered co-regulator recruitment. Hum Mol Genet. 13:3139–3149.

    CAS  PubMed  Google Scholar 

  • Bardeesy N, Cheng KH, Berger JH, et al. (2006) Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20:3130–3146.

    CAS  PubMed  Google Scholar 

  • Blondeau B, Lesage J, Czernichow P, et al. (2001) Glucocorticoids impair fetal β-cell development in rats. Am J Physiol Endocrinol Metab. 281:E592–E599.

    CAS  PubMed  Google Scholar 

  • Bort R, Martinez-Barbera JP, Beddington RS, et al. (2004) Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development. 131:797–806.

    CAS  PubMed  Google Scholar 

  • Breslin MB, Zhu M, Lan MS. (2003) NeuroD1/E47 regulates the E-box element of a novel zinc finger transcription factor, IA-1, in developing nervous system. J Biol Chem. 278:38991–38997.

    CAS  PubMed  Google Scholar 

  • Brorson M, Hougaard DM, Nielsen JH, et al. (2001) Expression of SMAD signal transduction molecules in the pancreas. Histochem Cell Biol. 116:263–267.

    CAS  PubMed  Google Scholar 

  • Burke Z, Oliver G. (2002) Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mech Dev. 118:147–155.

    CAS  PubMed  Google Scholar 

  • Burlison JS, Long Q, Fujitani Y, et al. (2008) Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol. 316:74–86.

    CAS  PubMed  Google Scholar 

  • Buteau J, Foisy S, Rhodes CJ, et al. (2001) Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic β-cell proliferation. Diabetes. 50:2237–2243.

    CAS  PubMed  Google Scholar 

  • Buteau J, Roduit R, Susini S, et al. (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in β (INS-1)-cells. Diabetologia. 42:856–864.

    CAS  PubMed  Google Scholar 

  • Celli G, LaRochelle WJ, Mackem S, et al. (1998) Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J. 17:1642–1655.

    CAS  PubMed  Google Scholar 

  • Chao CS, Loomis ZL, Lee JE, et al. (2007) Genetic identification of a novel NeuroD1 function in the early differentiation of islet alpha, PP and epsilon cells. Dev Biol. 312:523–532.

    CAS  PubMed  Google Scholar 

  • Chen Y, Pan FC, Brandes N, et al. (2004) Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol. 271:144–160.

    CAS  PubMed  Google Scholar 

  • Chertow BS, Baranetsky NG, Sivitz WI, et al. (1983) Cellular mechanisms of insulin release. Effects of retinoids on rat islet cell-to-cell adhesion, reaggregation, and insulin release. Diabetes. 32:568–574.

    CAS  PubMed  Google Scholar 

  • Chertow BS, Buschmann RJ, Kaplan RL. (1979) Cellular mechanisms of insulin release. Effects of retinol on insulin release and islet ultrastructure. Diabetes. 28:754–761.

    CAS  PubMed  Google Scholar 

  • Chiang MK, Melton DA. (2003) Single-cell transcript analysis of pancreas development. Dev Cell. 4:383–393.

    CAS  PubMed  Google Scholar 

  • Cirulli V, Baetens D, Rutishauser U, et al. (1994) Expression of neural cell adhesion molecule (N-CAM) in rat islets and its role in islet cell type segregation. J Cell Sci. 107:1429–1436.

    CAS  PubMed  Google Scholar 

  • Cirulli V, Crisa L, Beattie GM, et al. (1998) KSA antigen Ep-CAM mediates cell-cell adhesion of pancreatic epithelial cells: morphoregulatory roles in pancreatic islet development. J Cell Biol. 140:1519–1534.

    CAS  PubMed  Google Scholar 

  • Cissell MA, Zhao L, Sussel L, et al. (2003) Transcription factor occupancy of the insulin gene in vivo. Evidence for direct regulation by Nkx2.2. J Biol Chem. 278:751–756.

    CAS  PubMed  Google Scholar 

  • Cockell M, Stevenson BJ, Strubin M, et al. (1989) Identification of a cell-specific DNA-binding activity that interacts with a transcriptional activator of genes expressed in the acinar pancreas. Mol Cell Biol. 9:2464–2476.

    CAS  PubMed  Google Scholar 

  • Collombat P, Hecksher-Sørensen J, Broccoli V, et al. (2005) The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and β-cell lineages in the mouse endocrine pancreas. Development. 132:2969–2980.

    CAS  PubMed  Google Scholar 

  • Collombat P, Hecksher-Sørensen J, Krull J, et al. (2007) Embryonic endocrine pancreas and mature β cells acquire alpha and PP cell phenotypes upon Arx misexpression. J Clin Invest. 117:961–970.

    CAS  PubMed  Google Scholar 

  • Crisera CA, Maldonado TS, Kadison AS, et al. (2000) Transforming growth factor-β 1 in the developing mouse pancreas: a potential regulator of exocrine differentiation. Differentiation. 65:255–259.

    CAS  PubMed  Google Scholar 

  • Crisera CA, Rose MI, Connelly PR, et al. (1999) The ontogeny of TGF-β1, -β2, -β3, and TGF-β receptor-II expression in the pancreas: implications for regulation of growth and differentiation. J Pediatr Surg. 34:689–694.

    CAS  PubMed  Google Scholar 

  • Dahl E, Koseki H, Balling R. (1997) Pax genes and organogenesis. Bioessays. 19:755–765.

    CAS  PubMed  Google Scholar 

  • Dahl U, Sjødin A, Semb H. (1996) Cadherins regulate aggregation of pancreatic β-cells in vivo. Development. 122:2895–2902.

    CAS  PubMed  Google Scholar 

  • Dai C, Huh CG, Thorgeirsson SS, et al. (2005) Beta-cell-specific ablation of the hepatocyte growth factor receptor results in reduced islet size, impaired insulin secretion, and glucose intolerance. Am J Pathol. 167:429–436.

    CAS  PubMed  Google Scholar 

  • Decker K, Goldman DC, Grasch CL, et al. (2006) Gata6 is an important regulator of mouse pancreas development. Dev Biol. 298:415–429.

    CAS  PubMed  Google Scholar 

  • Deutsch G, Jung J, Zheng M, et al. (2001) A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development. 128:871–881.

    CAS  PubMed  Google Scholar 

  • Dichmann DS, Miller CP, Jensen J, et al. (2003) Expression and misexpression of members of the FGF and TGFβ families of growth factors in the developing mouse pancreas. Dev Dyn. 226:663–674.

    CAS  PubMed  Google Scholar 

  • Dichmann DS, Yassin H, Serup P, et al. (2006) Analysis of pancreatic endocrine development in GDF11-deficient mice. Dev Dyn. 235:3016–3025.

    CAS  PubMed  Google Scholar 

  • diIorio P, Alexa K, Choe SK, et al. (2007) TALE-family homeodomain proteins regulate endodermal sonic hedgehog expression and pattern the anterior endoderm. Dev Biol. 304:221–231.

    CAS  PubMed  Google Scholar 

  • diIorio PJ, Moss JB, Sbrogna JL, et al. (2002) Sonic hedgehog is required early in pancreatic islet development. Dev Biol. 244:75–84.

    CAS  PubMed  Google Scholar 

  • Dutta S, Gannon M, Peers B, et al. (2001) PDX:PBX complexes are required for normal proliferation of pancreatic cells during development. Proc Natl Acad Sci USA. 98:1065–1070.

    CAS  PubMed  Google Scholar 

  • Duvillié B, Attali M, Bounacer A, et al. (2006) The mesenchyme controls the timing of pancreatic β-cell differentiation. Diabetes. 55:582–589.

    PubMed  Google Scholar 

  • Elghazi L, Cras-Méneur C, Czernichow P, et al. (2002) Role for FGFR2IIIb-mediated signals in controlling pancreatic endocrine progenitor cell proliferation. Proc Natl Acad Sci USA. 99:3884–3889.

    CAS  PubMed  Google Scholar 

  • Erickson SL, O’Shea KS, Ghaboosi N, et al. (1997) ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development. 124:4999–5011.

    CAS  PubMed  Google Scholar 

  • Esni F, Johansson BR, Radice GL, et al. (2001) Dorsal pancreas agenesis in N-cadherin- deficient mice. Dev Biol. 238:202–212.

    CAS  PubMed  Google Scholar 

  • Fujitani Y, Fujitani S, Boyer DF, et al. (2006) Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes Dev. 20:253–266.

    CAS  PubMed  Google Scholar 

  • Furukawa M, Eto Y, Kojima I, et al. (1995) Expression of immunoreactive activin A in fetal rat pancreas. Endocr J. 42:63–68.

    CAS  PubMed  Google Scholar 

  • Gannon M, Ables ET, Crawford L, et al. (2008) pdx-1 function is specifically required in embryonic β cells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Dev Biol. 314:406–417.

    CAS  PubMed  Google Scholar 

  • Gannon M, Gamer LW, Wright CV. (2001) Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol. 238:185–201.

    CAS  PubMed  Google Scholar 

  • Garcia-Ocaña A, Takane KK, Syed MA, et al. (2000) Hepatocyte growth factor overexpression in the islet of transgenic mice increases β cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem. 275:1226–1232.

    PubMed  Google Scholar 

  • Garofano A, Czernichow P, Bréant B. (1997) In utero undernutrition impairs rat β-cell development. Diabetologia. 40:1231–1234.

    CAS  PubMed  Google Scholar 

  • Garofano A, Czernichow P, Bréant B. (1998) Beta-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia. 41:1114–1120.

    CAS  PubMed  Google Scholar 

  • Garofano A, Czernichow P, Bréant B. (1999) Effect of ageing on β-cell mass and function in rats malnourished during the perinatal period. Diabetologia. 42:711–718.

    CAS  PubMed  Google Scholar 

  • Garofano A, Czernichow P, Bréant B. (2000) Impaired β-cell regeneration in perinatally malnourished rats: a study with STZ. FASEB J. 14:2611–2617.

    CAS  PubMed  Google Scholar 

  • Gasa R, Mrejen C, Lynn FC, et al. (2008) Induction of pancreatic islet cell differentiation by the neurogenin-neuroD cascade. Differentiation. 76:381–391.

    CAS  PubMed  Google Scholar 

  • Gassmann M, Casagranda F, Orioli D, et al. (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature. 378:390–394.

    CAS  PubMed  Google Scholar 

  • Gerrish K, Van Velkinburgh JC, Stein R. (2004) Conserved transcriptional regulatory domains of the pdx-1 gene. Mol Endocrinol. 18:533–548.

    CAS  PubMed  Google Scholar 

  • Gittes GK, Galante PE, Hanahan D, et al. (1996) Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development. 122:439–447.

    CAS  PubMed  Google Scholar 

  • Goto Y, Nomura M, Tanaka K, et al. (2007) Genetic interactions between activin type IIB receptor and Smad2 genes in asymmetrical patterning of the thoracic organs and the development of pancreas islets. Dev Dyn. 236:2865–2874.

    PubMed  Google Scholar 

  • Goulley J, Dahl U, Baeza N, et al. (2007) BMP4-BMPR1A signaling in β cells is required for and augments glucose-stimulated insulin secretion. Cell Metab. 5:207–219.

    CAS  PubMed  Google Scholar 

  • Gradwohl G, Dierich A, LeMeur M, et al. (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA. 97:1607–1611.

    CAS  PubMed  Google Scholar 

  • Grapin-Botton A, Majithia AR, Melton DA. (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev. 15:444–454.

    CAS  PubMed  Google Scholar 

  • Greenwood AL, Li S, Jones K, et al. (2007) Notch signaling reveals developmental plasticity of Pax4(+) pancreatic endocrine progenitors and shunts them to a duct fate. Mech Dev. 124:97–107.

    CAS  PubMed  Google Scholar 

  • Gu G, Dubauskaite J, Melton DA. (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 129:2447–2457.

    CAS  PubMed  Google Scholar 

  • Gu G, Wells JM, Dombkowski D, et al. (2004) Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development. 131:165–179.

    CAS  PubMed  Google Scholar 

  • Guillemain G, Filhoulaud G, Da Silva-Xavier G, et al. (2007) Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J Biol Chem. 282:15228–15237.

    CAS  PubMed  Google Scholar 

  • Guz Y, Montminy MR, Stein R, et al. (1995) Expression of murine STF-1, a putative insulin gene transcription factor, in β cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development. 121:11–18.

    CAS  PubMed  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 271:350–353.

    CAS  PubMed  Google Scholar 

  • Hald J, Hjorth JP, German MS, et al. (2003) Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuates endocrine development. Dev Biol. 260:426–437.

    CAS  PubMed  Google Scholar 

  • Hale MA, Kagami H, Shi L, et al. (2005) The homeodomain protein PDX1 is required at mid-pancreatic development for the formation of the exocrine pancreas. Dev Biol. 286:225–237.

    CAS  PubMed  Google Scholar 

  • Harmon EB, Apelqvist AA, Smart NG, et al. (2004) GDF11 modulates NGN3+ islet progenitor cell number and promotes β-cell differentiation in pancreas development. Development. 131:6163–6174.

    CAS  PubMed  Google Scholar 

  • Hart A, Papadopoulou S, Edlund H. (2003) Fgf10 maintains Notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev Dyn. 228:185–193.

    CAS  PubMed  Google Scholar 

  • Haumaitre C, Barbacci E, Jenny M, et al. (2005) Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci USA. 102:1490–1495.

    CAS  PubMed  Google Scholar 

  • Hebrok M, Kim SK, Melton DA. (1998) Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12:1705–1713.

    CAS  PubMed  Google Scholar 

  • Hebrok M, Kim SK, St Jacques B, et al. (2000) Regulation of pancreas development by hedgehog signaling. Development. 127:4905–4913.

    CAS  PubMed  Google Scholar 

  • Heiser PW, Lau J, Taketo MM, et al. (2006) Stabilization of β-catenin impacts pancreas growth. Development. 133:2023–2032.

    CAS  PubMed  Google Scholar 

  • Heller RS, Dichmann DS, Jensen J, et al. (2002) Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Dev Dyn. 225:260–270.

    CAS  PubMed  Google Scholar 

  • Heller RS, Jenny M, Collombat P, et al. (2005) Genetic determinants of pancreatic epsilon-cell development. Dev Biol. 286:217–224.

    CAS  PubMed  Google Scholar 

  • Heller RS, Stoffers DA, Liu A, et al. (2004) The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity. Dev Biol. 268:123–134.

    CAS  PubMed  Google Scholar 

  • Henseleit KD, Nelson SB, Kuhlbrodt K, et al. (2005) NKX6 transcription factor activity is required for alpha- and beta-cell development in the pancreas. Development. 132:3139–3149.

    CAS  PubMed  Google Scholar 

  • Heremans Y, Van De Casteele M, in’t Veld P, et al. (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol. 159:303–312.

    CAS  PubMed  Google Scholar 

  • Hisaoka M, Haratake J, Hashimoto H. (1993) Pancreatic morphogenesis and extracellular matrix organization during rat development. Differentiation. 53:163–172.

    CAS  PubMed  Google Scholar 

  • Hogan BL. (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev. 6:432–438.

    CAS  PubMed  Google Scholar 

  • Hogan BL. (1999) Morphogenesis. Cell. 96:225–233.

    CAS  PubMed  Google Scholar 

  • Holland AM, Hale MA, et al. (2002) Experimental control of pancreatic development and maintenance. Proc Natl Acad Sci U S A. 99(19):12236–12241.

    CAS  PubMed  Google Scholar 

  • Hua H, Zhang YQ, Dabernat S, et al. (2006) BMP4 regulates pancreatic progenitor cell expansion through Id2. J Biol Chem. 281:13574–13580.

    CAS  PubMed  Google Scholar 

  • Huang HP, Chu K, Nemoz-Gaillard E, et al. (2002) Neogenesis of β-cells in adult BETA2/NeuroD-deficient mice. Mol Endocrinol. 16:541–551.

    CAS  PubMed  Google Scholar 

  • Huang HP, Liu M, El-Hodiri HM, et al. (2000) Regulation of the pancreatic islet-specific gene BETA2 (neuroD) by neurogenin 3. Mol Cell Biol. 20:3292–3307.

    CAS  PubMed  Google Scholar 

  • Hui H, Wright C, Perfetti R. (2001) Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1-positive pancreatic ductal cells into insulin-secreting cells. Diabetes. 50:785–796.

    CAS  PubMed  Google Scholar 

  • Huotari MA, Miettinen PJ, Palgi J, et al. (2002) ErbB signaling regulates lineage determination of developing pancreatic islet cells in embryonic organ culture. Endocrinology. 143:4437–4446.

    CAS  PubMed  Google Scholar 

  • Hussain MA, Lee J, Miller CP, et al. (1997) POU domain transcription factor Brain 4 confers pancreatic alpha-cell-specific expression of the proglucagon gene through interaction with a novel proximal promoter G1 element. Mol Cell Biol. 17:7186–7194.

    CAS  PubMed  Google Scholar 

  • Huypens P, Ling Z, Pipeleers D, et al. (2000) Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia. 43:1012–1019.

    CAS  PubMed  Google Scholar 

  • Jackerott M, Larsson LI. (1997) Immunocytochemical localization of the NPY/PYY Y1 receptor in the developing pancreas. Endocrinology. 138:5013–5018.

    CAS  PubMed  Google Scholar 

  • Jackson LF, Qiu TH, Sunnarborg SW, et al. (2003) Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J. 22:2704–2716.

    CAS  PubMed  Google Scholar 

  • Jacquemin P, Durviaux SM, Jensen J, et al. (2000) Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol Cell Biol. 20:4445–4454.

    CAS  PubMed  Google Scholar 

  • Jacquemin P, Lemaigre FP, Rousseau GG. (2003) The Onecut transcription factor HNF-6 (OC-1) is required for timely specification of the pancreas and acts upstream of Pdx-1 in the specification cascade. Dev Biol. 258:105–116.

    CAS  PubMed  Google Scholar 

  • Jensen J, Heller RS, Funder-Nielsen T, et al. (2000a) Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes. 49:163–176.

    CAS  PubMed  Google Scholar 

  • Jensen J, Pedersen EE, Galante P, et al. (2000b) Control of endodermal endocrine development by Hes-1. Nat Genet. 24:36–44.

    CAS  PubMed  Google Scholar 

  • Jepeal LI, Fujitani Y, Boylan MO, et al. (2005) Cell-specific expression of glucose-dependent-insulinotropic polypeptide is regulated by the transcription factor PDX-1. Endocrinology. 146:383–391.

    CAS  PubMed  Google Scholar 

  • Jiang FX, Cram DS, DeAizpurua HJ, et al. (1999) Laminin-1 promotes differentiation of fetal mouse pancreatic β-cells. Diabetes. 48:722–730.

    CAS  PubMed  Google Scholar 

  • Jiang FX, Georges-Labouesse E, Harrison LC. (2001) Regulation of laminin 1-induced pancreatic β-cell differentiation by alpha6 integrin and alpha-dystroglycan. Mol Med. 7:107–114.

    CAS  PubMed  Google Scholar 

  • Jiang FX, Harrison LC. (2005) Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells. Exp Cell Res. 308:114–122.

    CAS  PubMed  Google Scholar 

  • Joglekar MV, Parekh VS, Mehta S, et al. (2007) MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol. 311:603–612.

    CAS  PubMed  Google Scholar 

  • Johansson KA, Dursun U, Jordan N, et al. (2007) Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev Cell. 12:457–465.

    CAS  PubMed  Google Scholar 

  • Jonsson J, Ahlgren U, Edlund T, et al. (1995) IPF1, a homeodomain protein with a dual function in pancreas development. Int J Dev Biol. 39:789–798.

    CAS  PubMed  Google Scholar 

  • Jonsson J, Carlsson L, Edlund T, et al. (1994) Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 371:606–609.

    CAS  PubMed  Google Scholar 

  • Kaneto H, Miyagawa J, Kajimoto Y, et al. (1997) Expression of heparin-binding epidermal growth factor-like growth factor during pancreas development. A potential role of PDX-1 in transcriptional activation. J Biol Chem. 272:29137–29143.

    CAS  PubMed  Google Scholar 

  • Kato M, Kato K, Blaner WS, et al. (1985) Plasma and cellular retinoid-binding proteins and transthyretin (prealbumin) are all localized in the islets of Langerhans in the rat. Proc Natl Acad Sci USA. 82:2488–2492.

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Cooper B, Gannon M, et al. (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 32:128–134.

    CAS  PubMed  Google Scholar 

  • Ketola I, Otonkoski T, Pulkkinen MA, et al. (2004) Transcription factor GATA-6 is expressed in the endocrine and GATA-4 in the exocrine pancreas. Mol Cell Endocrinol. 226:51–57.

    CAS  PubMed  Google Scholar 

  • Kim SK, Hebrok M, Li E, et al. (2000) Activin receptor patterning of foregut organogenesis. Genes Dev. 14:1866–1871.

    CAS  PubMed  Google Scholar 

  • Kim SK, Hebrok M, Melton DA. (1997) Notochord to endoderm signaling is required for pancreas development. Development. 124:4243–4252.

    CAS  PubMed  Google Scholar 

  • Kim SK, Selleri L, Lee JS, et al. (2002) Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat Genet. 30:430–435.

    CAS  PubMed  Google Scholar 

  • Kloosterman WP, Lagendijk AK, Ketting RF, et al. (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol. 5:e203.

    PubMed  Google Scholar 

  • Kobayashi H, Spilde TL, Bhatia AM, et al. (2002) Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial-mesenchymal interactions. Gastroenterology. 123:1331–1340.

    CAS  PubMed  Google Scholar 

  • Kramer B, Andrew A, Rawdon BB, et al. (1987) The effect of pancreatic mesenchyme on the differentiation of endocrine cells from gastric endoderm. Development. 100:661–671.

    CAS  PubMed  Google Scholar 

  • Krapp A, Knöfler M, Ledermann B, et al. (1998) The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 12:3752–3763.

    CAS  PubMed  Google Scholar 

  • Lammert E, Cleaver O, Melton D. (2001) Induction of pancreatic differentiation by signals from blood vessels. Science. 294:564–567.

    CAS  PubMed  Google Scholar 

  • Le Bras S, Czernichow P, Scharfmann R. (1998a) A search for tyrosine kinase receptors expressed in the rat embryonic pancreas. Diabetologia. 41:1474–1481.

    Google Scholar 

  • Le Bras S, Miralles F, Basmaciogullari A, et al. (1998b) Fibroblast growth factor 2 promotes pancreatic epithelial cell proliferation via functional fibroblast growth factor receptors during embryonic life. Diabetes. 47:1236–1242.

    PubMed  Google Scholar 

  • Lee CS, De León DD, Kaestner KH, et al. (2006) Regeneration of pancreatic islets after partial pancreatectomy in mice does not involve the reactivation of neurogenin-3. Diabetes. 55:269–272.

    CAS  PubMed  Google Scholar 

  • Lee KF, Simon H, Chen H, et al. (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature. 378:394–398.

    CAS  PubMed  Google Scholar 

  • Lee JC, Smith SB, Watada H, et al. (2001) Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes. 50:928–936.

    CAS  PubMed  Google Scholar 

  • Lemaigre FP, Durviaux SM, Truong O, et al. (1996) Hepatocyte nuclear factor 6, a transcription factor that contains a novel type of homeodomain and a single cut domain. Proc Natl Acad Sci USA. 93:9460–9464.

    CAS  PubMed  Google Scholar 

  • Leonard J, Peers B, Johnson T, et al. (1993) Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol Endocrinol. 7:1275–1283.

    CAS  PubMed  Google Scholar 

  • Li H, Edlund H. (2001) Persistent expression of Hlxb9 in the pancreatic epithelium impairs pancreatic development. Dev Biol. 240:247–253.

    CAS  PubMed  Google Scholar 

  • Li Z, Manna P, Kobayashi H, et al. (2004) Multifaceted pancreatic mesenchymal control of epithelial lineage selection. Dev Biol. 269:252–263.

    CAS  PubMed  Google Scholar 

  • Lin JW, Biankin AV, Horb ME, et al. (2004) Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol. 274:491–503.

    CAS  PubMed  Google Scholar 

  • Lorent K, Yeo SY, Oda T, et al. (2004) Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development. 131:5753–5766.

    CAS  PubMed  Google Scholar 

  • Lynn FC, Skewes-Cox P, Kosaka Y, et al. (2007a) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 56:2938–2945.

    CAS  PubMed  Google Scholar 

  • Lynn FC, Smith SB, Wilson ME, et al. (2007b) Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA. 104:10500–10505.

    CAS  PubMed  Google Scholar 

  • MacFarlane WM, Read ML, Gilligan M, et al. (1994) Glucose modulates the binding activity of the β-cell transcription factor IUF1 in a phosphorylation-dependent manner. Biochem J. 303:625–631.

    CAS  PubMed  Google Scholar 

  • Maldonado TS, Kadison AS, Crisera CA, et al. (2000) Ontogeny of activin B and follistatin in developing embryonic mouse pancreas: implications for lineage selection. J Gastrointest Surg. 4:269–275.

    CAS  PubMed  Google Scholar 

  • Mamin A, Philippe J. (2007) Activin A decreases glucagon and arx gene expression in alpha-cell lines. Mol Endocrinol. 21:259–273.

    CAS  PubMed  Google Scholar 

  • Manfroid I, Delporte F, Baudhuin A, et al. (2007) Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development. Development. 134:4011–4021.

    CAS  PubMed  Google Scholar 

  • Manova K, De Leon V, Angeles M, et al. (1995) mRNAs for activin receptors II and IIB are expressed in mouse oocytes and in the epiblast of pregastrula and gastrula stage mouse embryos. Mech Dev. 49:3–11.

    CAS  PubMed  Google Scholar 

  • Marenah L, McCluskey JT, Abdel-Wahab YH, et al. (2006) A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biol Chem. 387:941–947.

    CAS  PubMed  Google Scholar 

  • Marshak S, Totary H, Cerasi E, et al. (1996) Purification of the β-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc Natl Acad Sci USA. 93:15057–15062.

    CAS  PubMed  Google Scholar 

  • Martín M, Gallego-Llamas J, Ribes V, et al. (2005) Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol. 284:399–411.

    PubMed  Google Scholar 

  • Mashima H, Ohnishi H, Wakabayashi K, et al. (1996a) Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest. 97:1647–1654.

    CAS  PubMed  Google Scholar 

  • Mashima H, Shibata H, Mine T, et al. (1996b) Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology. 137:3969–3976.

    CAS  PubMed  Google Scholar 

  • Matsuoka TA, Artner I, Henderson E, et al. (2004) The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc Natl Acad Sci USA. 101:2930–2933.

    CAS  PubMed  Google Scholar 

  • McLin VA, Rankin SA, Zorn AM. (2007) Repression of Wnt/β-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 134:2207–2217.

    CAS  PubMed  Google Scholar 

  • Mellitzer G, Bonné S, Luco RF, et al. (2006) IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas. Embo J. 25:1344–1352.

    CAS  PubMed  Google Scholar 

  • Miettinen PJ, Huotari M, Koivisto T, et al. (2000) Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development. 127:2617–2627.

    CAS  PubMed  Google Scholar 

  • Miller CP, McGehee RE Jr, Habener JF. (1994) IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 13:1145–1156.

    CAS  PubMed  Google Scholar 

  • Miralles F, Battelino T, Czernichow P, et al. (1998a) TGF-β plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol. 143:827–836.

    CAS  PubMed  Google Scholar 

  • Miralles F, Czernichow P, Scharfmann R. (1998b) Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development. 125:1017–1024.

    CAS  PubMed  Google Scholar 

  • Miralles F, Lamotte L, Couton D, et al. (2006) Interplay between FGF10 and Notch signaling is required for the self-renewal of pancreatic progenitors. Int J Dev Biol. 50:17–26.

    CAS  PubMed  Google Scholar 

  • Molotkov A, Molotkova N, Duester G. (2005) Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn. 232:950–957.

    CAS  PubMed  Google Scholar 

  • Moriya N, Komazaki S, Asashima M. (2000a) In vitro organogenesis of pancreas in Xenopus laevis dorsal lips treated with retinoic acid. Dev Growth Differ. 42:175–185.

    CAS  PubMed  Google Scholar 

  • Moriya N, Komazaki S, Takahashi S, et al. (2000b) In vitro pancreas formation from Xenopus ectoderm treated with activin and retinoic acid. Dev Growth Differ. 42:593–602.

    CAS  PubMed  Google Scholar 

  • Murtaugh LC, Stanger BZ, Kwan KM, et al. (2003) Notch signaling controls multiple steps of pancreatic differentiation. Proc Natl Acad Sci USA. 100:14920–14925.

    CAS  PubMed  Google Scholar 

  • Naya FJ, Huang HP, Qiu Y, et al. (1997) Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11:2323–2334.

    CAS  PubMed  Google Scholar 

  • Nelson SB, Schaffer AE, Sander M. (2007) The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting β-cell fate specification in Pdx1+ pancreatic progenitor cells. Development. 134:2491–2500.

    CAS  PubMed  Google Scholar 

  • Nikolova G, Jabs N, Konstantinova I, et al. (2006) The vascular basement membrane: a niche for insulin gene expression and beta cell proliferation. Dev Cell. 10:397–405.

    CAS  PubMed  Google Scholar 

  • Nishimura W, Kondo T, Salameh T, et al. (2006) A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Dev Biol. 293:526–539.

    CAS  PubMed  Google Scholar 

  • Norgaard GA, Jensen JN, Jensen J. (2003) FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev Biol. 264:323–338.

    CAS  PubMed  Google Scholar 

  • Offield MF, Jetton TL, Labosky PA, et al. (1996) PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 122:983–995.

    CAS  PubMed  Google Scholar 

  • Ohlsson H, Karlsson K, Edlund T. (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 12:4251–4259.

    CAS  PubMed  Google Scholar 

  • Ohnishi H, Ohgushi N, Tanaka S, et al. (1995) Conversion of amylase-secreting rat pancreatic AR42J cells to neuronlike cells by activin A. J Clin Invest. 95:2304–2314.

    CAS  PubMed  Google Scholar 

  • Olbrot M, Rud J, Moss LG, et al. (2002) Identification of β-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc Natl Acad Sci USA. 99:6737–6742.

    CAS  PubMed  Google Scholar 

  • Oster A, Jensen J, Edlund H, et al. (1998a) Homeobox gene product Nkx 6.1 immunoreactivity in nuclei of endocrine cells of rat and mouse stomach. J Histochem Cytochem. 46:717–721.

    CAS  PubMed  Google Scholar 

  • Oster A, Jensen J, Serup P, et al (1998b) Rat endocrine pancreatic development in relation to two homeobox gene products (Pdx-1 and Nkx 6.1). J Histochem Cytochem. 46:707–715.

    CAS  PubMed  Google Scholar 

  • Pedersen JK, Nelson SB, Jorgensen MC, et al. (2005) Endodermal expression of Nkx6 genes depends differentially on Pdx1. Dev Biol. 288:487–501.

    CAS  PubMed  Google Scholar 

  • Peers B, Sharma S, Johnson T, et al. (1995) The pancreatic islet factor STF-1 binds cooperatively with Pbx to a regulatory element in the somatostatin promoter: importance of the FPWMK motif and of the homeodomain. Mol Cell Biol. 15:7091–7097.

    CAS  PubMed  Google Scholar 

  • Petri A, Ahnfelt-Rønne J, Frederiksen KS, et al. (2006) The effect of neurogenin3 deficiency on pancreatic gene expression in embryonic mice. J Mol Endocrinol. 37:301–316.

    CAS  PubMed  Google Scholar 

  • Petrucco S, Wellauer PK, Hagenbüchle O. (1990) The DNA-binding activity of transcription factor PTF1 parallels the synthesis of pancreas-specific mRNAs during mouse development. Mol Cell Biol. 10:254–264.

    CAS  PubMed  Google Scholar 

  • Pictet RL, Clark WR, Williams RH, et al. (1972) An ultrastructural analysis of the developing embryonic pancreas. Dev Biol. 29:436–467.

    CAS  PubMed  Google Scholar 

  • Pictet R, Rutter W. (1972) Development of the embryonic endocrine pancreas. In: Steiner DF, Frenkel M eds. Handbook of Physiology. American Physiology Society; Washington DC:pp 25–66.

    Google Scholar 

  • Poll AV, Pierreux CE, Lokmane L, et al. (2006) A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes. 55:61–69.

    CAS  PubMed  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J, et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 432:226–230.

    CAS  PubMed  Google Scholar 

  • Prasadan K, Daume E, Preuett B, et al. (2002) Glucagon is required for early insulin-positive differentiation in the developing mouse pancreas. Diabetes. 51:3229–3236.

    CAS  PubMed  Google Scholar 

  • Raum JC, Gerrish K, Artner I, et al. (2006) FoxA2, Nkx2.2, and PDX-1 regulate islet β-cell-specific mafA expression through conserved sequences located between base pairs –8118 and –7750 upstream from the transcription start site. Mol Cell Biol. 26:5735–5743.

    CAS  PubMed  Google Scholar 

  • Ritz-Laser B, Mamin A, Brun T, et al. (2005) The zinc finger-containing transcription factor Gata-4 is expressed in the developing endocrine pancreas and activates glucagon gene expression. Mol Endocrinol. 19:759–770.

    CAS  PubMed  Google Scholar 

  • Roccisana J, Reddy V, Vasavada RC, et al. (2005) Targeted inactivation of hepatocyte growth factor receptor c-met in β-cells leads to defective insulin secretion and GLUT-2 downregulation without alteration of β-cell mass. Diabetes. 54:2090–2102.

    CAS  PubMed  Google Scholar 

  • Rose MI, Crisera CA, Colen KL, et al. (1999) Epithelio-mesenchymal interactions in the developing mouse pancreas: morphogenesis of the adult architecture. J Pediatr Surg. 34:774–780.

    CAS  PubMed  Google Scholar 

  • Roy S, Qiao T, Wolff C, et al. (2001) Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr Biol. 11:1358–1363.

    CAS  PubMed  Google Scholar 

  • Samaras SE, Cissell MA, Gerrish K, et al. (2002) Conserved sequences in a tissue-specific regulatory region of the pdx-1 gene mediate transcription in pancreatic β cells: role for hepatocyte nuclear factor 3 β and Pax6. Mol Cell Biol. 22:4702–4713.

    CAS  PubMed  Google Scholar 

  • Sander M, Neubüser A, Kalamaras J, et al. (1997) Genetic analysis reveals that PAX6 is required for normal transcription of pancreatic hormone genes and islet development. Genes Dev. 11:1662–1673.

    CAS  PubMed  Google Scholar 

  • Sander M, Sussel L, Conners J, et al. (2000) Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in the pancreas. Development. 127:5533–5540.

    CAS  PubMed  Google Scholar 

  • Sanvito F, Herrera PL, Huarte J, et al. (1994) TGF-β 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development. 120:3451–3462.

    CAS  PubMed  Google Scholar 

  • Schwitzgebel VM, Scheel DW, Conners JR, et al. (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development. 127:3533–3542.

    CAS  PubMed  Google Scholar 

  • Sellick GS, Barker KT, Stolte-Dijkstra I, et al. (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 36:1301–1305.

    CAS  PubMed  Google Scholar 

  • Seymour PA, Freude KK, Tran MN, et al. (2007) SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA. 104:1865–1870.

    CAS  PubMed  Google Scholar 

  • Shen CN, Marguerie A, Chien CY, et al. (2007) All-trans retinoic acid suppresses exocrine differentiation and branching morphogenesis in the embryonic pancreas. Differentiation. 75:62–74.

    CAS  PubMed  Google Scholar 

  • Shiozaki S, Tajima T, Zhang YQ, et al. (1999) Impaired differentiation of endocrine and exocrine cells of the pancreas in transgenic mouse expressing the truncated type II activin receptor. Biochim Biophys Acta. 1450:1–11.

    CAS  PubMed  Google Scholar 

  • Simeone DM, Zhang L, Treutelaar MK, et al. (2006) Islet hypertrophy following pancreatic disruption of Smad4 signaling. Am J Physiol Endocrinol Metab. 291:E1305–E1316.

    CAS  PubMed  Google Scholar 

  • Sjödin A, Dahl U, Semb H. (1995) Mouse R-cadherin: expression during the organogenesis of pancreas and gastrointestinal tract. Exp Cell Res. 221:413–425.

    PubMed  Google Scholar 

  • Slack JM. (1995) Developmental biology of the pancreas. Development. 121:1569–1580.

    CAS  PubMed  Google Scholar 

  • Smart NG, Apelqvist AA, Gu X, et al. (2006) Conditional expression of Smad7 in pancreatic β cells disrupts TGF-β signaling and induces reversible diabetes mellitus. PLoS Biol. 4:e39.

    PubMed  Google Scholar 

  • Smith SB, Ee HC, Conners JR, et al. (1999) Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol. 19:8272–8280.

    CAS  PubMed  Google Scholar 

  • Smith SB, Watada H, German MS. (2004) Neurogenin3 activates the islet differentiation program while repressing its own expression. Mol Endocrinol. 18:142–149.

    CAS  PubMed  Google Scholar 

  • Sonnenberg E, Meyer D, Weidner KM, et al. (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 123:223–235.

    CAS  PubMed  Google Scholar 

  • Sosa-Pineda B, Chowdhury K, Torres M, et al. (1997) The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature. 386:399–402.

    CAS  PubMed  Google Scholar 

  • Spagnoli FM, Brivanlou AH. (2006) The RNA-binding protein, Vg1RBP, is required for pancreatic fate specification. Dev Biol. 292:442–456.

    CAS  PubMed  Google Scholar 

  • Stafford D, Hornbruch A, Mueller PR, et al. (2004) A conserved role for retinoid signaling in vertebrate pancreas development. Dev Genes Evol. 214:432–441.

    CAS  PubMed  Google Scholar 

  • Stafford D, Prince VE. (2002) Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol. 12:1215–1220.

    CAS  PubMed  Google Scholar 

  • Stafford D, White RJ, Kinkel MD, et al. (2006) Retinoids signal directly to zebrafish endoderm to specify insulin-expressing β-cells. Development. 133:949–956.

    CAS  PubMed  Google Scholar 

  • Stein B, Andrew A. (1989) Differentiation of endocrine cells in chick allantoic epithelium combined with pancreatic mesenchyme. Cell Differ Dev. 26:173–180.

    CAS  PubMed  Google Scholar 

  • Stoffers DA, Heller RS, Miller CP, et al. (1999) Developmental expression of the homeodomain protein IDX-1 in mice transgenic for an IDX-1 promoter/lacZ transcriptional reporter. Endocrinology. 140:5374–5381.

    CAS  PubMed  Google Scholar 

  • Stoffers DA, Kieffer TJ, Hussain MA, et al. (2000) Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes. 49:741–748.

    CAS  PubMed  Google Scholar 

  • Stoffers DA, Zinkin NT, Stanojevic V, et al. (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 15:106–110.

    CAS  PubMed  Google Scholar 

  • St-Onge L, Sosa-Pineda B, Chowdhury K, et al. (1997) Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 387:406–409.

    CAS  PubMed  Google Scholar 

  • Sussel L, Kalamaras J, Hartigan-O’Connor DJ, et al. (1998) Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic β cells. Development. 125:2213–2221.

    CAS  PubMed  Google Scholar 

  • Suzuki A, Nakauchi H, Taniguchi H. (2003) Glucagon-like peptide 1 (1-37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci USA. 100:5034–5039.

    CAS  PubMed  Google Scholar 

  • Swift GH, Liu Y, Rose SD, et al. (1998) An endocrine-exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Mol Cell Biol. 18:5109–5120.

    CAS  PubMed  Google Scholar 

  • Thomas MK, Rastalsky N, Lee JH, et al. (2000) Hedgehog signaling regulation of insulin production by pancreatic β-cells. Diabetes. 49:2039–2047.

    CAS  PubMed  Google Scholar 

  • Thowfeequ S, Ralphs KL, Yu WY, et al. (2007) Betacellulin inhibits amylase and glucagon production and promotes β cell differentiation in mouse embryonic pancreas. Diabetologia. 50:1688–1697.

    CAS  PubMed  Google Scholar 

  • Tulachan SS, Doi R, Kawaguchi Y, et al. (2003) All-trans retinoic acid induces differentiation of ducts and endocrine cells by mesenchymal/epithelial interactions in embryonic pancreas. Diabetes. 52:76–84.

    CAS  PubMed  Google Scholar 

  • Tulachan SS, Doi R, Kawaguchi Y, et al. (2007) TGF-β isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas. Dev Biol. 305:508–521.

    CAS  PubMed  Google Scholar 

  • Turque N, Plaza S, Radvanyi F, et al. (1994) Pax-QNR/Pax-6, a paired box- and homeobox-containing gene expressed in neurons, is also expressed in pancreatic endocrine cells. Mol Endocrinol. 8:929–938.

    CAS  PubMed  Google Scholar 

  • Van Velkinburgh JC, Samaras SE, Gerrish K, et al. (2005) Interactions between areas I and II direct pdx-1 expression specifically to islet cell types of the mature and developing pancreas. J Biol Chem. 280:38438–38444.

    PubMed  Google Scholar 

  • Verschueren K, Dewulf N, Goumans MJ, et al. (1995) Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Mech Dev. 52:109–123.

    CAS  PubMed  Google Scholar 

  • Vincent M, Guz Y, Rozenberg M, et al. (2003) Abrogation of protein convertase 2 activity results in delayed islet cell differentiation and maturation, increased alpha-cell proliferation, and islet neogenesis. Endocrinology. 144:4061–4069.

    CAS  PubMed  Google Scholar 

  • Vuguin PM, Kedees MH, Cui L, et al. (2006) Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology. 147:3995–4006.

    CAS  PubMed  Google Scholar 

  • Wang Q, Elghazi L, Martin S, et al. (2008) Ghrelin is a novel target of Pax4 in endocrine progenitors of the pancreas and duodenum. Dev Dyn. 237:51–61.

    CAS  PubMed  Google Scholar 

  • Wang J, Elghazi L, Parker SE, et al. (2004) The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic β-cell differentiation. Dev Biol. 266:178–189.

    CAS  PubMed  Google Scholar 

  • Wang J, Kilic G, Aydin M, et al. (2005) Prox1 activity controls pancreas morphogenesis and participates in the production of “secondary transition” pancreatic endocrine cells. Dev Biol. 286:182–194.

    CAS  PubMed  Google Scholar 

  • Wang S, Zhang J, Zhao A, et al. (2007) Loss of Myt1 function partially compromises endocrine islet cell differentiation and pancreatic physiological function in the mouse. Mech Dev. 124:898–910.

    CAS  PubMed  Google Scholar 

  • Watada H, Scheel DW, Leung J, et al. (2003) Distinct gene expression programs function in progenitor and mature islet cells. J Biol Chem. 278:17130–17140.

    CAS  PubMed  Google Scholar 

  • Wiebe PO, Kormish JD, Roper VT, et al. (2007) Ptf1a binds to and activates area III, a highly conserved region of the Pdx1 promoter that mediates early pancreas-wide Pdx1 expression. Mol Cell Biol. 27:4093–4104.

    CAS  PubMed  Google Scholar 

  • Wilson ME, Kalamaras JA, German MS. (2002) Expression pattern of IAPP and prohormone convertase 1/3 reveals a distinctive set of endocrine cells in the embryonic pancreas. Mech Dev. 115:171–176.

    CAS  PubMed  Google Scholar 

  • Wilson ME, Yang KY, Kalousova A, et al. (2005) The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas. Diabetes. 54:3402–3409.

    CAS  PubMed  Google Scholar 

  • Wu KL, Gannon M, Peshavaria M, et al. (1997) Hepatocyte nuclear factor 3β is involved in pancreatic β-cell-specific transcription of the pdx-1 gene. Mol Cell Biol. 17:6002–6013.

    CAS  PubMed  Google Scholar 

  • Xu X, D’Hoker J, Stangé G, et al. (2008) Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 132:197–207.

    CAS  PubMed  Google Scholar 

  • Xu Y, Wang S, Zhang J, et al. (2006) The fringe molecules induce endocrine differentiation in embryonic endoderm by activating cMyt1/cMyt3. Dev Biol. 297:340–349.

    CAS  PubMed  Google Scholar 

  • Yamaoka T, Idehara C, Yano M, et al. (1998) Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants. J Clin Invest. 102:294–301.

    CAS  PubMed  Google Scholar 

  • Ye F, Duvillié B, Scharfmann R. (2005) Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia. 48:277–281.

    CAS  PubMed  Google Scholar 

  • Yee NS, Lorent K, Pack M. (2005) Exocrine pancreas development in zebrafish. Dev Biol. 284:84–101.

    CAS  PubMed  Google Scholar 

  • Yew KH, Hembree M, Prasadan K, et al. (2005) Cross-talk between bone morphogenetic protein and transforming growth factor-β signaling is essential for exendin-4-induced insulin-positive differentiation of AR42J cells. J Biol Chem. 280:32209–32217.

    CAS  PubMed  Google Scholar 

  • Yew KH, Prasadan KL, Preuett BL, et al. (2004) Interplay of glucagon-like peptide-1 and transforming growth factor-β signaling in insulin-positive differentiation of AR42J cells. Diabetes. 53:2824–2835.

    CAS  PubMed  Google Scholar 

  • Yoshitomi H, Zaret KS. (2004) Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development. 131:807–817.

    CAS  PubMed  Google Scholar 

  • Zecchin E, Filippi A, Biemar F, et al. (2007) Distinct delta and jagged genes control sequential segregation of pancreatic cell types from precursor pools in zebrafish. Dev Biol. 301:192–204.

    CAS  PubMed  Google Scholar 

  • Zhang YQ, Kanzaki M, Furukawa M, et al. (1999) Involvement of Smad proteins in the differentiation of pancreatic AR42J cells induced by activin A. Diabetologia. 42:719–727.

    CAS  PubMed  Google Scholar 

  • Zhang YQ, Mashima H, Kojima I. (2001) Changes in the expression of transcription factors in pancreatic AR42J cells during differentiation into insulin-producing cells. Diabetes. 50(Suppl 1):S10-S14.

    CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, Pineyro MA, et al. (1999) Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells. Diabetes. 48:2358–2366.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Gittes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gittes, G.K., Prasadan, K., Tulachan, S. (2010). Pancreas and Islet Development. In: Efrat, S. (eds) Stem Cell Therapy for Diabetes. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-366-4_1

Download citation

Publish with us

Policies and ethics