Skip to main content

Role of TRPM7 in Ischemic CNS Injury

  • Chapter
  • First Online:
  • 798 Accesses

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

One of the key features noted in animal models of stroke is the progressive nature of the excitotoxic cascade. While the excessive release of glutamate and consequent overactivation of NMDARs occurs rapidly (time span of minutes to hours), the ensuing neuronal death has been noted to progress with some delay, the phenomena being appropriately referred to as delayed neuronal death (DND). Surprisingly, given the massive release of glutamate and strong NMDAR activation, during the early phases of the excitotoxic cascade, neurons are initially capable of regulating and maintaining intracellular Ca2+ near physiological levels. Only with some delay do neurons lose the ability to regulate Ca2+. This delayed rise in intracellular Ca2+ is invariably insensitive to treatment with antiexcitotoxic therapies (AETs), consisting of glutamate receptor and Ca2+ channel blockers [1–3].

The failure of AETs to prevent DND coupled with their inability to provide neuroprotection in clinical trials has led our research groups to seek additional Ca2+ influx pathways in the hopes of identifying previously overlooked sources. Our recent studies have led to the demonstration of the important contribution of TRPM7 channels, the focus of present chapter, to neuronal cell death.

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Manev H, Favaron M, Guidotti A, and Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36: 106–112, 1989.

    PubMed  CAS  Google Scholar 

  2. Tymianski M, Charlton MP, Carlen PL, and Tator CH. Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res 607: 319–323, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Randall RD and Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neuropsychiatry 12: 1882–1895, 1992.

    CAS  Google Scholar 

  4. Hermosura MC and Garruto RM. TRPM7 and TRPM2-Candidate susceptibility genes for Western Pacific ALS and PD? Biochim Biophys Acta 1772: 822–835, 2007.

    PubMed  CAS  Google Scholar 

  5. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, and Fleig A. LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability. Nature 411: 590–595, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Tiulpakov A, Kalintchenko N, Semitcheva T, Polyakov A, Dedov I, Sverdlova P, Kolesnikova G, Peterkova V, and Rubtsov P. A potential rearrangement between CYP19 and TRPM7 genes on chromosome 15q21.2 as a cause of aromatase excess syndrome. J Clin Endocrinol Metab 90: 4184–4190, 2005.

    Article  PubMed  CAS  Google Scholar 

  7. Vannier B, Zhu X, Brown D, and Birnbaumer L. The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. J Biol Chem 273: 8675–8679, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Clapham DE, Runnels LW, and Strubing C. The TRP ion channel family. Nat Rev Neurosci 2: 387–396, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Yamaguchi H, Matsushita M, Nairn AC, and Kuriyan J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell 7: 1047–1057, 2001.

    Article  PubMed  CAS  Google Scholar 

  10. Ryazanov AG. Elongation factor-2 kinase and its newly discovered relatives. FEBS Lett 514: 26–29, 2002.

    Article  PubMed  CAS  Google Scholar 

  11. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, and Scharenberg AM. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114: 191–200, 2003.

    Article  PubMed  CAS  Google Scholar 

  12. Demeuse P, Penner R, and Fleig A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J Gen Physiol 127: 421–434, 2006.

    Article  PubMed  CAS  Google Scholar 

  13. Mei ZZ, Xia R, Beech DJ, and Jiang LH. Intracellular coiled-coil domain engaged in subunit interaction and assembly of melastatin-related transient receptor potential channel 2. J Biol Chem 281: 38748–38756, 2006.

    Article  PubMed  CAS  Google Scholar 

  14. Tsuruda PR, Julius D, and Minor DL Jr.. Coiled coils direct assembly of a cold-activated TRP channel. Neuron 51: 201–212, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Fujiwara Y and Minor DL Jr.. X-ray Crystal Structure of a TRPM Assembly Domain Reveals an Antiparallel Four-stranded Coiled-coil. J Mol Biol. 383: 854–870, 2008.

    Article  PubMed  CAS  Google Scholar 

  16. Rohacs T, Lopes CM, Michailidis I, and Logothetis DE. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8: 626–634, 2005.

    Article  PubMed  CAS  Google Scholar 

  17. Runnels LW, Yue L, and Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291: 1043–1047, 2001.

    Article  PubMed  CAS  Google Scholar 

  18. Riazanova LV, Pavur KS, Petrov AN, Dorovkov MV, and Riazanov AG. Novel type of signaling molecules: protein kinases covalently linked to ion channels. Mol Biol (Mosk) 35: 321–332, 2001.

    CAS  Google Scholar 

  19. Chubanov V, Schnitzler M, Waring J, Plank A, and Gudermann T. Emerging roles of TRPM6/TRPM7 channel kinase signal transduction complexes. Naunyn Schmiedebergs Arch Pharmacol 371: 334–341, 2005.

    Article  PubMed  CAS  Google Scholar 

  20. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, and McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26: 159–178, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. Kunert-Keil C, Bisping F, Kruger J, and Brinkmeier H. Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7: 159, 2006.

    Article  PubMed  Google Scholar 

  22. Oancea E, Wolfe JT, and Clapham DE. Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98: 245–253, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Kim BJ, Lim HH, Yang DK, Jun JY, Chang IY, Park CS, So I, Stanfield PR, and Kim KW. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129: 1504–1517, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, and Inoue R. Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci 95: 403–419, 2004.

    Article  PubMed  CAS  Google Scholar 

  25. Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong ZG, Jackson MF, Tymianski M, and MacDonald JF. TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci USA 104: 16323–16328, 2007.

    Article  PubMed  CAS  Google Scholar 

  26. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, and Clapham DE. The TRPM7 Ion Channel Functions in Cholinergic Synaptic Vesicles and Affects Transmitter Release. Neuron 52: 485–496, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, and Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121: 49–60, 2003.

    Article  PubMed  CAS  Google Scholar 

  28. Kozak JA and Cahalan MD. MIC channels are inhibited by internal divalent cations but not ATP. Biophys J 84: 922–927, 2003.

    Article  PubMed  CAS  Google Scholar 

  29. Runnels LW, Yue L, and Clapham DE. The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4: 329–336, 2002.

    PubMed  CAS  Google Scholar 

  30. Langeslag M, Clark K, Moolenaar WH, van Leeuwen FN, and Jalink K. Activation of TRPM7 channels by PLC-coupled receptor agonists. J Biol Chem. 282: 232–239, 2007.

    Article  PubMed  Google Scholar 

  31. Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, and Perraud AL. The channel kinases TRPM6 and TRPM7 are functionally non-redundant. J Biol Chem. 280: 37763–37771, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, and Garruto RM. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci USA 102: 11510–11515, 2005.

    Article  PubMed  CAS  Google Scholar 

  33. Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, Yue L, and Runnels LW. TRPM7 Regulates Cell Adhesion by Controlling the Calcium-dependent Protease Calpain. J Biol Chem 281: 11260–11270, 2006.

    Article  PubMed  CAS  Google Scholar 

  34. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, and van Leeuwen FN. TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25: 290–301, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Fleig A and Penner R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 25: 633–639, 2004.

    Article  PubMed  CAS  Google Scholar 

  36. Montell C. Mg2+ homeostasis: the Mg2+nificent TRPM chanzymes. Curr Biol 13: R799–R801, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Estevez AY, Roberts RK, and Strange K. Identification of store-independent and store-operated Ca2+ conductances in Caenorhabditis elegans intestinal epithelial cells. J Gen Physiol 122: 207–223, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Elizondo MR, Arduini BL, Paulsen J, MacDonald EL, Sabel JL, Henion PD, Cornell RA, and Parichy DM. Defective skeletogenesis with kidney stone formation in dwarf zebrafish mutant for trpm7. Curr Biol 15: 667–671, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Vriens J, Owsianik G, Voets T, Droogmans G, and Nilius B. Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch 449: 213–226, 2004.

    PubMed  CAS  Google Scholar 

  40. Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, and Norris J. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31: 347–354, 2000.

    PubMed  CAS  Google Scholar 

  41. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, and Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284: 1845–1848, 1999.

    Article  PubMed  CAS  Google Scholar 

  42. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, and Tymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298: 846–850, 2002.

    Article  PubMed  CAS  Google Scholar 

  43. Sun HS, Doucette TA, Liu Y, Fang Y, Teves L, Aarts M, Ryan CL, Bernard PB, Lau A, Forder JP, Salter MW, Wang YT, Tasker RA, and Tymianski M. Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39: 2544–2553, 2008.

    Article  PubMed  CAS  Google Scholar 

  44. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, and Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell 115: 863–877, 2003.

    Article  PubMed  CAS  Google Scholar 

  45. Jiang J, Li M, and Yue L. Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126: 137–150, 2005.

    Article  PubMed  CAS  Google Scholar 

  46. Lee JM, Grabb MC, Zipfel GJ, and Choi DW. Brain tissue responses to ischemia. J Clin Invest 106: 723–731, 2000.

    Article  PubMed  CAS  Google Scholar 

  47. Lee JM, Zipfel GJ, Park KH, He YY, Hsu CY, and Choi DW. Zinc translocation accelerates infarction after mild transient focal ischemia. Neuroscience 115: 871–878, 2002.

    Article  PubMed  CAS  Google Scholar 

  48. Maynard CJ, Bush AI, Masters CL, Cappai R, and Li QX. Metals and amyloid-beta in Alzheimer's disease. Int J Exp Pathol 86: 147–159, 2005.

    Article  PubMed  CAS  Google Scholar 

  49. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568, 1999.

    PubMed  CAS  Google Scholar 

  50. He Y, Yao G, Savoia C, and Touyz RM. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res 96: 207–215, 2005.

    Article  PubMed  CAS  Google Scholar 

  51. Numata T, Shimizu T, and Okada Y. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol 292: C460–C467, 2007.

    Article  PubMed  CAS  Google Scholar 

  52. Zhu T, Zhou L, Mori S, Wang Z, McTiernan CF, Qiao C, Chen C, Wang DW, Li J, and Xiao X. Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 112: 2650–2659, 2005.

    Article  PubMed  CAS  Google Scholar 

  53. Marler JR and Goldstein LB. Medicine. Stroke – tPA and the clinic. Science 301: 1677, 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. MacDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jackson*, M.F., Sun*, HS., Tymianski, M., MacDonald, J.F. (2009). Role of TRPM7 in Ischemic CNS Injury. In: Annunziato, L. (eds) New Strategies in Stroke Intervention. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60761-280-3_10

Download citation

Publish with us

Policies and ethics