Skip to main content

Extrinsic and Intrinsic Control of Germline Stem Cell Regulation in the Drosophila Ovary

  • Chapter
Book cover Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Germline stem cells (GSCs) in the Drosophila ovary represent one of the best studied adult stem cell types, while their regulatory microenvironment or niche is also one of the best defined ones. Due to the availability of powerful genetic tools and a large number of mutants, much progress has been made in understanding the molecular mechanisms underlying intrinsic and extrinsic controls of GSC regulation within the past decade. Since several excellent reviews have been written on these stem cells, this review primarily discusses progress within the last couple of years and important questions remaining to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong MD, Jin Z, Xie T. Molecular mechanisms of germline stem cell regulation. Annu Rev Genet. 2005;39:173–95.

    Article  PubMed  CAS  Google Scholar 

  2. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005;21:605–31.

    Article  PubMed  CAS  Google Scholar 

  3. Xie T, Spradling A. The Drosophila ovary: an n vivo stem cell system. In: Marshak DR, Gardner RL, Gottlieb D, editors. Stem cell biology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001. pp.129–48.

    Google Scholar 

  4. Kirilly D, Xie T. The Drosophila ovary: an active stem cell community. Cell Res. 2007;171:15–25.

    Article  PubMed  CAS  Google Scholar 

  5. Ohlstein B, Kai T, Decotto E, Spradling A. The stem cell niche: theme and variations. Curr Opin Cell Biol. 2004;166: 693–9.

    Article  PubMed  CAS  Google Scholar 

  6. Lin H. The stem-cell niche theory: lessons from flies. Nat Rev Genet. 2002;312:931–40.

    Article  PubMed  CAS  Google Scholar 

  7. Spradling AC. Developmental genetics of oogenesis. In: Bate M, Martinez Arias A, editors. The development of Drosophila melanogaster. 1st ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1993. pp. 1–71.

    Google Scholar 

  8. Lin H, Spradling AC. Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev Biol. 1993;1591:140–52.

    Article  PubMed  CAS  Google Scholar 

  9. Song X, Zhu CH, Doan C, Xie T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 2002;2965574:1855–7.

    Article  PubMed  CAS  Google Scholar 

  10. Decotto E, Spradling AC. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell. 2005;9:501–10.

    Article  PubMed  CAS  Google Scholar 

  11. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;2905490:328–30.

    Article  PubMed  CAS  Google Scholar 

  12. Nystul T, Spradling A. An epithelial niche in the Drosophila ovary undergoes long-range stem cell replacement. Cell Stem Cell. 2007;13:277–85

    Article  PubMed  CAS  Google Scholar 

  13. Margolis J, Spradling A. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development. 1995;12111:3797–807.

    PubMed  CAS  Google Scholar 

  14. Forbes AJ, Lin H, Ingham PW, Spradling AC. Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development. 1996;1224:1125–35.

    PubMed  CAS  Google Scholar 

  15. Song X, Wong MD, Kawase E, et al. Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development. 2004;1316:1353–64.

    Article  PubMed  CAS  Google Scholar 

  16. Lin H, Yue L, Spradling AC. The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development. 1994;1204:947–56.

    PubMed  CAS  Google Scholar 

  17. de Cuevas M, Lee JK, Spradling AC. Alpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development. 1996;12212:3959–68.

    PubMed  Google Scholar 

  18. Cox DN, Chao A, Lin H. Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development. 2000;1273:503–14.

    PubMed  CAS  Google Scholar 

  19. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998;1223: 3715–27.

    Article  PubMed  CAS  Google Scholar 

  20. King FJ, Szakmary A, Cox DN, Lin H. Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the Drosophila ovary. Mol Cell. 2001;73:497–508.

    Article  PubMed  CAS  Google Scholar 

  21. Xie T, Spradling AC. Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell. 1998;942:251–60.

    Article  PubMed  CAS  Google Scholar 

  22. Song X, Call GB, Kirilly D, Xie T. Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development. 2007;1346:1071–80.

    Article  PubMed  CAS  Google Scholar 

  23. Song X, Xie T. DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci U S A. 2002;9923:14813–8.

    Article  PubMed  CAS  Google Scholar 

  24. Jan YN, Jan LY. Asymmetric cell division in the Drosophila nervous system. Nat Rev Neurosci. 2001;211:772–9.

    Article  PubMed  CAS  Google Scholar 

  25. Kai T, Spradling A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature. 2004;4286982:564–9.

    Article  PubMed  CAS  Google Scholar 

  26. Brawley C, Matunis E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science. 2004;3045675:1331–4.

    Article  PubMed  CAS  Google Scholar 

  27. Ward EJ, Shcherbata HR, Reynolds SH, Fischer KA, Hatfield SD, Ruohola-Baker H. Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr Biol. 2006;1623: 2352–8.

    Article  PubMed  CAS  Google Scholar 

  28. Nellen D, Burke R, Struhl G, Basler K. Direct and long-range action of a DPP morphogen gradient. Cell. 1996;853:357–68.

    Article  PubMed  CAS  Google Scholar 

  29. King FJ, Lin H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development. 1999;1269:1833–44.

    PubMed  CAS  Google Scholar 

  30. Lin H, Spradling AC. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development. 1997;12412:2463–76.

    PubMed  CAS  Google Scholar 

  31. Yin H, Lin H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature. 2007; 450(7167):304–8.

    Article  PubMed  CAS  Google Scholar 

  32. Brower-Toland B, Findley SD, Jiang L, et al. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev. 2007;2118:2300–11.

    Article  PubMed  CAS  Google Scholar 

  33. Chen D, McKearin D. Gene circuitry controlling a stem cell niche. Curr Biol. 2005;15:179–84.

    Article  PubMed  CAS  Google Scholar 

  34. Chen D, McKearin D. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr Biol. 2003;1320:1786–91.

    Article  PubMed  CAS  Google Scholar 

  35. Szakmary A, Cox DN, Wang Z, Lin H. Regulatory relationship among piwi, pumilio, and bag-of-marbles in Drosophila germline stem cell self-renewal and differentiation. Curr Biol. 2005;15:171–8.

    Article  PubMed  CAS  Google Scholar 

  36. Ohlstein B, McKearin D. Ectopic expression of the Drosophila Bam protein eliminates oogenic germline stem cells. Development. 1997;12418:3651–62.

    PubMed  CAS  Google Scholar 

  37. McKearin D, Ohlstein B. A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development. 1995;1219:2937–47.

    PubMed  CAS  Google Scholar 

  38. Chen D, McKearin DM. A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell. Development. 2003;1306:1159–70.

    Article  PubMed  CAS  Google Scholar 

  39. Casanueva MO, Ferguson EL. Germline stem cell number in the Drosophila ovary is regulated by redundant mechanisms that control Dpp signaling. Development. 2004;1319:1881–90.

    Article  PubMed  CAS  Google Scholar 

  40. Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol. 2001;2311:265–78.

    Article  PubMed  CAS  Google Scholar 

  41. Drummond-Barbosa D, Spradling AC. Alpha-endosulfine, a potential regulator of insulin secretion, is required for adult tissue growth control in Drosophila. Dev Biol. 2004;266:310–21.

    Article  PubMed  CAS  Google Scholar 

  42. LaFever L, Drummond-Barbosa D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science. 2005;3095737:1071–3.

    Article  PubMed  CAS  Google Scholar 

  43. Tazuke SI, Schulz C, Gilboa L, et al. A germline-specific gap junction protein required for survival of differentiating early germ cells. Development. 2002;12910:2529–39.

    PubMed  CAS  Google Scholar 

  44. Gilboa L, Forbes A, Tazuke SI, Fuller MT, Lehmann R. Germ line stem cell differentiation in Drosophila requires gap junctions and proceeds via an intermediate state. Development. 2003;13026:6625–34.

    Article  PubMed  CAS  Google Scholar 

  45. Kiger AA, White-Cooper H, Fuller MT. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature. 2000;4076805:750–4.

    Article  PubMed  CAS  Google Scholar 

  46. Tran J, Brenner TJ, DiNardo S. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature. 2000;4076805:754–7.

    Article  PubMed  CAS  Google Scholar 

  47. Schultz C, Wood CG, Jones DL, Tazuke SI, Fuller MT. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development. 2002;129:4523–34.

    Google Scholar 

  48. Xi R, Xie T. Stem cell self-renewal controlled by chromatin remodeling factors. Science. 2005;310:1487–9.

    Article  PubMed  CAS  Google Scholar 

  49. Maines JZ, Park JK, Williams M, McKearin DM. Stonewalling Drosophila stem cell differentiation by epigenetic controls. Development. 2007;1348:1471–9.

    Article  PubMed  CAS  Google Scholar 

  50. Forbes A, Lehmann R. Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development. 1998;1254:679–90.

    PubMed  CAS  Google Scholar 

  51. Wang Z, Lin H. The division of Drosophila germline stem cells and their precursors requires a specific cyclin. Curr Biol. 2005;15: 328–33.

    Article  PubMed  CAS  Google Scholar 

  52. Gilboa L, Lehmann R. Repression of primordial germ cell differentiation parallels germ line stem cell maintenance. Curr Biol. 2004;1411:981–6.

    Article  PubMed  CAS  Google Scholar 

  53. Murata Y, Wharton RP. Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell. 1995;805:747–56.

    Article  PubMed  CAS  Google Scholar 

  54. Barker DD, Wang C, Moore J, Dickinson LK, Lehmann R. Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev. 1992;6(12A):2312–26.

    Article  PubMed  CAS  Google Scholar 

  55. Styhler S, Nakamura A, Swan A, Suter B, Lasko P. Vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development. 1998;1259:1569–78.

    PubMed  CAS  Google Scholar 

  56. Lee HH, Kim YS, Kim KH, et al. Structural and functional insights into Dom34, a key component of no-go mRNA decay. Mol Cell. 2007;276:938–50.

    Article  PubMed  CAS  Google Scholar 

  57. Xi R, Doan C, Liu D, Xie T. Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway. Development. 2005;132:5365–74.

    Article  PubMed  CAS  Google Scholar 

  58. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H. Stem cell division is regulated by the microRNA pathway. Nature. 2005;435:974–8.

    Article  PubMed  CAS  Google Scholar 

  59. Jin Z, Xie T. Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol. 2007;176:539–44.

    Article  PubMed  CAS  Google Scholar 

  60. Park JK, Liu X, Strauss TJ, McKearin DM, Liu Q. The miRNA pathway intrinsically controls self-renewal of drosophila germline stem cells. Curr Biol. 2007;176:533–8.

    Article  PubMed  CAS  Google Scholar 

  61. Forstemann K, Tomari Y, Du T, et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 2005;3:e236.

    Article  PubMed  Google Scholar 

  62. Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 2005;19:1674–9.

    Article  PubMed  CAS  Google Scholar 

  63. Bopp D, Horabin JI, Lersch RA, Cline TW, Schedl P. Expression of the Sex-lethal gene is controlled at multiple levels during Drosophila oogenesis. Development 1993;1183: 797–812.

    PubMed  CAS  Google Scholar 

  64. Christerson LB, McKearin DM. Orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev. 1994;85:614–28.

    Article  PubMed  CAS  Google Scholar 

  65. Lantz V, Chang JS, Horabin JI, Bopp D, Schedl P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 1994;85:598–613.

    Article  PubMed  CAS  Google Scholar 

  66. Lavoie CA, Ohlstein B, McKearin DM. Localization and function of Bam protein require the benign gonial cell neoplasm gene product. Dev Biol. 1999;2122:405–13.

    Article  PubMed  CAS  Google Scholar 

  67. Ohlstein B, Lavoie CA, Vef O, Gateff E, McKearin DM. The Drosophila cystoblast differentiation factor, benign gonial cell neoplasm, is related to DExH-box proteins and interacts genetically with bag-of-marbles. Genetics. 2000;155: 1809–19.

    PubMed  CAS  Google Scholar 

  68. McKearin DM, Spradling AC. Bag-of-marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev. 1990;4(12B):2242–51.

    Article  PubMed  CAS  Google Scholar 

  69. Mulligan PK, Mohler JD, Kalfayan LJ. Molecular localization and developmental expression of the otu locus of Drosophila melanogaster. Mol Cell Biol. 1988;84:1481–8.

    PubMed  CAS  Google Scholar 

  70. Pan L, Chen S, Weng C, et al. Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell. 2007;1:458–69.

    Article  PubMed  CAS  Google Scholar 

  71. Boyle M, Wong C, Rocha M, Jones DL. Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell. 2007;1:470–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhang, N., Xie, T. (2009). Extrinsic and Intrinsic Control of Germline Stem Cell Regulation in the Drosophila Ovary. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_14

Download citation

Publish with us

Policies and ethics