Skip to main content

Antibody-Based Proteomics Analysis of Tumor Cell Signaling Pathways

  • Chapter
  • 1210 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002; 298:1912–1934.

    Article  PubMed  CAS  Google Scholar 

  2. Kostich M, English J, Madison V, Gheyas F, Wang L, Qiu P, Greene J, Laz TM. Human members of the eukaryotic protein kinase family. Genome Biol. 2002; 3: RESEARCH0043.

    Google Scholar 

  3. 3. Wolstencroft KJ, Stevens R, Tabernero A, Brass, A. PhosphaBase: An ontology-driven database resource for protein phosphatases. Proteins Structure Function Bioinformatics. 2004; 58:290–294.

    Article  Google Scholar 

  4. 4. Pelech SL. Kinase profiling: The mysteries unraveled. Future Pharmaceuticals. 2006; 1:23–25.

    Google Scholar 

  5. 5. Mukherji M. Phosphoproteomics in analyzing signaling pathways. Expert Rev Proteomics. 2005; 2:117–128.

    Article  PubMed  CAS  Google Scholar 

  6. Via MC. Kinases: From targets to therapeutics. Cambridge Health Institutes Insight Reports. 2003; 1–124.

    Google Scholar 

  7. 7. Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics. 2002; 1:323–333.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Yoo GH, Piechocki MP, Ensley JF, Nguyen T, Oliver J, Meng H, Kewson D, Shibuya TY, Lonardo F, Tainsky MA. Docetaxel induced gene expression patterns in head and neck squamous cell carcinoma using cDNA microarray and PowerBlot. Clin Cancer Res. 2002; 8:3910–3921.

    PubMed  CAS  Google Scholar 

  9. 9. Laemmli UK. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature. 1970; 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Burnette WN. “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981; 112:195–203.

    Article  PubMed  CAS  Google Scholar 

  11. 11. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975; 250:4007–4021.

    PubMed  Google Scholar 

  12. 12. Celis JE, Østergaard M, Jensen NA, Gromova I, Rasmussen HH, Gromov P. Human and mouse proteomic databases: Novel resources in the protein universe. FEBS Letters. 1998; 430:64–72.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422:198–207.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. (2000) Proc Natl Acad Sci USA. 2000; 97:9390–9395.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Bose R, Molina H, Patterson AS, Bitok JK, Periaswamy B, Bader JS, Pandey A, Cole PA. Phosphoproteomic analysis of Her2/neu signaling and inhibition. Proc Natl Acad Sci USA. 2006; 103:9773–9778.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Annan RS, Huddleston MJ, Verma R, Deshaies RJ, Carr SA. A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal Chem. 2001; 73:393–404.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol. 2002; 20:301–305.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Hunter T. The Croonian Lecture 1997. Philos Trans R Soc Lond B Biol Sci. 1998; 353:583–605.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Maguire PB, Wynne KJ, Harney DF, O'Donoghue NM, Stephens G, Fitzgerald DJ. Identification of the phosphotyrosine proteome. Proteomics. 2002; 2:642–648.

    Article  PubMed  CAS  Google Scholar 

  20. 20. Gronborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, Jensen ON, Pandey A. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: Identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics. 2002; 1:517–527.

    Article  PubMed  CAS  Google Scholar 

  21. 21. Wingren C, Borrebaeck CA. High-throughput proteomics using antibody microarrays. Expert Rev Proteomics. 2004; 1:355–364.

    Article  PubMed  CAS  Google Scholar 

  22. 22. Borrebaeck CA. Antibody microarray-based oncoproteomics. Expert Opin Biol Ther. 2006; 6:833–838.

    Article  PubMed  CAS  Google Scholar 

  23. 23. Hudelist G, Pacher-Zavisin M, Singer CF, Holper T, Kubista E, Schreiber M, Manavi M, Bilban M, Czerwenka K. Use of high-throughput protein array for profiling of differentially expressed proteins in normal and malignant breast tissue. Breast Cancer Res Treat. 2004; 86:281–291.

    Article  PubMed  CAS  Google Scholar 

  24. 24. Ghobrial IM, McCormick DJ, Kaufmann SH, Leontovich AA, Loegering DA, Dai NT, Krajnik KL, Stenson MJ, Melhem MF, Novak AJ, Ansell SM, Witzig TE. Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood. 2005; 105:3722–3730.

    Article  PubMed  CAS  Google Scholar 

  25. 25. Kopf E, Shnitzer D, Zharhary D. Panorama Ab Microarray Cell Signaling kit: a unique tool for protein expression analysis. Proteomics. 2005; 5:2412–2416.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Smith L, Watson MB, O'Kane SL, Drew PJ, Lind MJ, Cawkwell L. The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol Cancer Ther. 2006; 5:2115–2120.

    Article  PubMed  CAS  Google Scholar 

  27. 27. Usui-Aoki K, Shimada K, Nagano M, Kawai M, Koga H. A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology. Proteomics. 2005; 5:2396–2401.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Pelech S. Dimerization in protein kinase signaling. J Biol. 2006; 5:12.

    Article  PubMed  Google Scholar 

  29. 29. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003; 284:31–53.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Holbro T, Hynes NE. ErbB receptors: Directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol. 2004; 44:195–217.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006; 7:505–516.

    Article  PubMed  CAS  Google Scholar 

  32. 32. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006; 366:2–16.

    Article  PubMed  CAS  Google Scholar 

  33. 33. Lin CR, Chen WS, Kruiger W, Stolarsky LS, Weber W, Evans RM, Verma IM, Gill GN, Rosenfeld MG. Expression cloning of human EGF receptor complementary DNA: Gene amplification and three related messenger RNA products in A431 cells. Science. 1984; 224:843–848.

    Article  PubMed  CAS  Google Scholar 

  34. 34. Merlino GT, Xu YH, Ishii S, Clark AJ, Semba K, Toyoshima K, Yamamoto T, Pastan I. Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells. Science. 1984; 224:417–419.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984; 309:418–425.

    Article  PubMed  CAS  Google Scholar 

  36. 36. Helseth E, Dalen A, Unsgaard G, Vik E, Helseth A. Overexpression of the epidermal growth factor receptor gene in a human carcinoma cell line, derived from a brain metastasis. J Neuro-Oncology. 1989; 7:81–88.

    Article  CAS  Google Scholar 

  37. 37. Gulli LF, Palmer KC, Chen YQ, Reddy KB. Epidermal growth factor-induced apoptosis in A431 cells can be reversed by reducing the tyrosine kinase activity. Cell Growth Differ. 1996; 7:173–178.

    PubMed  CAS  Google Scholar 

  38. 38. Smida Rezgui S, Honore S, Rognoni JB, Martin PM, Penel C. Up-regulation of alpha 2 beta 1 integrin cell-surface expression protects A431 cells from epidermal growth factor-induced apoptosis. Int J Cancer. 2000; 87:360–367.

    Article  PubMed  CAS  Google Scholar 

  39. 39. Wu SL, Kim J, Hancock WS, Karger B. Extended Range Proteomic Analysis (ERPA): A new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). J Proteome Res. 2005; 4:1155–1170.

    Article  PubMed  CAS  Google Scholar 

  40. 40. Wu SL, Kim J, Bandle RW, Liotta L, Petricoin E, Karger BL. Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Mol Cell Proteomics. 2006; 5:1610–1627.

    Article  PubMed  CAS  Google Scholar 

  41. 41. Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol. 2004; 22:1139–1145.

    Article  PubMed  CAS  Google Scholar 

  42. 42. Espina V, Woodhouse EC, Wulfkuhle J, Asmussen HD, Petricoin EF 3rd, Liotta LA. Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods. 2004; 290:121–133.

    Article  PubMed  CAS  Google Scholar 

  43. 43. Pelech S, Sutter C, Zhang, H. Kinetworks™ protein kinase multiblot analysis. Methods Mol Biol: Cancer Cell Signaling: Methods and Protocols (Terrian, D.M, ed.) 2003; 218:99–111.

    CAS  Google Scholar 

  44. 44. Zhang H, Shi X, Hampong M, Paddon H, Dai W, Pelech SL. Polo-like kinase regulation of centrosomes is mediated through Serine 4 phosphorylation of B23/nucleophosmin. J Biol Chem. 2004; 279:35726–35734.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Canadian Institutes for Health Research to SP and a grant from the National Research Council of Canada Industrial Research Assistance Program to Kinexus.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this chapter

Cite this chapter

Pelech, S., Zhang, H. (2008). Antibody-Based Proteomics Analysis of Tumor Cell Signaling Pathways. In: Bronchud, M.H., Foote, M.A., Giaccone, G., Olopade, O., Workman, P. (eds) Principles of Molecular Oncology. Humana Press. https://doi.org/10.1007/978-1-59745-470-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-470-4_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-25-1

  • Online ISBN: 978-1-59745-470-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics