Skip to main content

Interleukin-4/13 and Cancer

  • Chapter
  • 933 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Both interleukin-4 (IL-4) and interleukin-13 (IL-13) are predominantly T-helper-2 (Th2) derived cytokines and share many structural and functional characteristics with each other. Both cytokines are also shown to be produced by mast cells and basophils (1–3). IL-4 was first identified in 1980s as a B-cell growth factor (4), and shown to mediate many effects on numerous cell types including T-cells, B-cells, monocytes, mast cells, endothelial cells, fibroblasts, astrocytes, and osteoblasts (5,6).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Minty A, Chalon P, Deroq JM, et al. Interleukin 13 is a new lymphokine regulating inflammatory and immune responses. Nature, 362: 248–250, 1993.

    Article  CAS  PubMed  Google Scholar 

  2. Zurawski G, de Vries J. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today, 15: 19–26, 1994.

    Article  CAS  PubMed  Google Scholar 

  3. Brombacher F. The role of interleukin-13 in infectious diseases and allergy. BioEssays, 22: 646–656, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Howard M, Farrar J, Hilfiker M, et al. Identification of a T cell-derived B cell stimulatory factor distinct from IL-2. J Exp Med, 155: 914–923, 1982.

    Article  CAS  PubMed  Google Scholar 

  5. Paul WE. Interleukin-4: A prototypic immunoregulatory lymphokine. Blood, 77:1859–1870, 1990.

    Google Scholar 

  6. Puri RK. Structure and function of interleukin 4 and its receptors. In: Cytokines: Interleukins and their receptors. Kurzrock R, Talpaz M, eds., Kluwer Academic Publishers, Norwell, MA, 143–186, 1995.

    Google Scholar 

  7. McKenzie ANJ, Culpepper JA, de Waal Malefyt R, et al. Interleukin 13, a T cell-derived cytokine that regulates human monocytes and B-cell function. Proc Natl Acad Sci USA, 90: 3735–3739, 1993.

    Article  CAS  PubMed  Google Scholar 

  8. Boulay JJ, Paul WE. The interleukin-4-related lymphokines and their binding to hematopoietin receptors. J Biol Chem, 267: 20525–20528, 1992.

    CAS  PubMed  Google Scholar 

  9. Kawakami K, Kawakami M, Snoy PJ, et al. In vivo over-expression of IL-13 receptor α2 chain inhibits tumorigenicity of human breast and pancreatic tumors in immunodeficient mice. J Exp Med, 194: 1743–1754, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. de Saint Vis B, Fugier VI, Massacrier C, et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol, 160: 1666–1676, 1998.

    Google Scholar 

  11. Hoshino T, Winkler-Pickett RT, Mason AT, et al. IL-13 production by NK cells: IL-13 producing NK cells are present in vivo in the absence of IFN-γ. J Immunol, 162: 51–59, 1999.

    CAS  PubMed  Google Scholar 

  12. Kaap U, Yeh W-C, Patterson B, et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med, 189: 1939–1945, 1999.

    Article  Google Scholar 

  13. Skinnider BF, Elia AJ, Gascoyne RD, et al. Interleukin 13 and interleukin 13 receptor are frequently expressed on Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood, 97: 250–255, 2001.

    Article  CAS  PubMed  Google Scholar 

  14. Ohshima K, Akaiwa M, Umeshita R, et al. Interleukin-13 and interleukin-13 receptor in Hodgkin’s disease: Possible autocrine mechanism and involvement in fibrosis. Histopathology, 38: 368–375, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Oshima Y, Puri RK. Suppression of an IL-13 autocrine growth loop in a human Hodgkin/Reed-Sternberg tumor cell line by a novel IL-13 antagonist. Cell Immunol, 211: 37–4–2, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Obiri NI, Husain SR, Debinski W, et al. Interleukin 13 inhibits growth of human renal cell carcinoma cells independently of the pl40 interleukin 4 receptor chain. Clin Cancer Res, 2: 1743–1749, 1996.

    CAS  PubMed  Google Scholar 

  17. Zurawski SM, Vega F, Huyghe B, et al. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J, 12: 2663–2670, 1993.

    CAS  PubMed  Google Scholar 

  18. de Waal Malefyt R, Figdor CG, Huijbens R, et al. Effect on IL-13 on phenotype, cytokine production, and cytokine function of human monocytes: Comparison with IL-4 and modulation by IFN-γ or IL-10. J Immunol, 151: 6370–6381, 1993.

    Google Scholar 

  19. Defrance T, Carayon P, Billian G, et al. Interleukin 13 is a B cell stimulating factor. J Exp Med, 179: 135–143, 1994.

    Article  CAS  PubMed  Google Scholar 

  20. Cooks BG, de Waal Malefyt R, Galizzi JP, et al. IL-13 induces proliferation and differentiation of human B cells activated by the CD40 ligand. Int Immunol, 5: 657–663, 1993.

    Article  Google Scholar 

  21. Punnonen J, Aversa G, Cooks BG, et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA, 90: 3730–3734, 1993.

    Article  CAS  PubMed  Google Scholar 

  22. McKenzie GJ, Emson CL, Bell SE, et al. Impaired development of Th2 cells in IL-13-deficient mice. Immunity, 9: 423–432, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. McKenzie GJ, Fallon PG, Emson CL, et al. Simultaneous disruption of interleukin(IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J Exp Med, 189: 1565–1572, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. McKenzie, A. N. J. Experimental models/tools for the analysis of IL-13 function. In: Brombacher F, ed. Interleulin-13. Landes Bioscience, Georgetown, TX. pp. 14–22, 2003.

    Google Scholar 

  25. Wills-Karp M, Luyimbazi J, Xu X, et al. Interleukin-13: central mediator of allergie asthma. Science, 282: 2258–2260, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Chiaramonte MG, Donaldson DD, Cheever AW, et al. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest, 104: 777–785, 1999.

    CAS  PubMed  Google Scholar 

  27. Li Y, Simons FER, Hay Glass KT. Environmental antigen-induced IL-13 responses are elevated among subjects with allergic rhinitis, are independent of IL-4, and are inhibited by endogenous IFN-γ synthesis. J Immunol, 161: 7004–7014, 1998.

    Google Scholar 

  28. Pawankar R, Okuda M, Yssel H, et al. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the FcεRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest, 99: 1492–1499, 1997.

    CAS  PubMed  Google Scholar 

  29. AkDais CA, AkDais M, Trautmann A, et al. Immune response in atopic dermatitis. Curr Opin Immunol, 12: 641–646, 2000.

    Article  Google Scholar 

  30. Wynn TA. IL-13 effector functions. Annu Rev Immunol, 21: 425–456, 2003.

    Article  CAS  PubMed  Google Scholar 

  31. Torigoe T, O’Connor R, Fagard R, et al. Interleukin-4 inhibits IL-2 induced proliferation of a human T-leukemia cell line without interfering with p56-lck kinase activation. Cytokine, 4: 369–376, 1992.

    Article  CAS  PubMed  Google Scholar 

  32. Manabe A, Coustan-Smith E, Kumagai M-A, et al. Interleukin-4 induces programmed cell death (apoptosis) in cases of high-risk acute lymphoblastic leukemia. Blood, 83: 1731–1737, 1994.

    CAS  PubMed  Google Scholar 

  33. Akashi K, Shibuya T, Harada M, et al. Interleukin 4 suppresses the spontaneous growth of chronic myelomonocytic leukemia cells. J Clin Invest, 88: 223–230, 1991.

    CAS  PubMed  Google Scholar 

  34. Luo H, Rubio M, Biron G, et al. Antiproliferative effect of interleukin-4 in B chronic lymphocytic leukemia. J Immunother, 10: 418–425, 1991.

    Article  CAS  PubMed  Google Scholar 

  35. Kooten CV, Rensink I, Aarden L, et al. Interleukin-4 inhibits both paracrine and autocrine tumor necrosis factor-α-induced proliferation of B chromic lymphocytic leukemia cells. Blood, 80:1299–1306, 1992.

    PubMed  Google Scholar 

  36. Andreeff FHM, Gruss H-J, Brach MA, et al. Interleukin-4 inhibits growth of multiple myelomas by suppressing IL-6 expression. Blood, 78: 2070–2074, 1991.

    PubMed  Google Scholar 

  37. Taylor CW, Grogan TM, Salmon SE. Effects of interleukin-4 on the in vitro growth of human lymphoid and plasma cell neoplasms. Blood, 75: 1114–1118, 1990.

    CAS  PubMed  Google Scholar 

  38. Defrance T, Fluckiger A-C, Rossi J-F, et al. Antiproliferative effects of IL-4 on freshly isolated non-Hodgkin malignant B-lymphoma cells. Blood, 79: 990–996, 1992.

    CAS  PubMed  Google Scholar 

  39. Wagteveld AJ, Zanten AKV, Esselink MT, et al. Expression and regulation of IL-4 receptors on human monocytes and acute myeloblastic leukemia cells. Leukemia, 5: 782–788, 1991.

    CAS  PubMed  Google Scholar 

  40. Totpal K, Aggarwal BB. Interleukin-4 potentiates the antiproliferative effects of tumor necrosis factor on various tumor cell lines. Cancer Res, 51: 4266–4270, 1991.

    CAS  PubMed  Google Scholar 

  41. Mori N, Yamashita U, Tanaka Y, et al. Interleukin-4 induces proliferation of adult T-cell leukemia cells. Eur J Hematol, 50: 133–140, 1993.

    Article  CAS  Google Scholar 

  42. Dancescu M, Rubio-Trujillo M, Biron G, et al. Interleukin-4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med, 176: 1319–1326, 1992.

    Article  CAS  PubMed  Google Scholar 

  43. Kay NE, Pittner BT. IL-4 biology: impact on normal and leukemic CLL B cells. Leuk Lymphoma, 44: 897–903, 2003.

    Article  CAS  PubMed  Google Scholar 

  44. Pu QQ, Bezwoda WR. Interleukin-4 prevents spontaneous in-vitro apoptosis in chronic lymphatic leukaemia but sensitizes B-CLL cells to melphalan cytotoxicity. Br J Haematol, 98: 413–417, 1997.

    Article  CAS  PubMed  Google Scholar 

  45. Obiri NI, Hillman G, Haas GP, et al. Expression of high affinity interleukin-4 receptors on human renal cell carcinoma cells and inhibition of tumor cell growth in vitro by interleukin-4. J Clin Invest, 91: 88–93, 1993.

    Article  CAS  PubMed  Google Scholar 

  46. Morisaki T, Yuzuki DH, Lin RT, et al. Interleukin-4 receptor expression and growth inhibition of gastric carcinoma by interleukin-4. Cancer Res, 52: 6059–6065, 1992.

    CAS  PubMed  Google Scholar 

  47. Topp MS, Koenigsmann M, Mire-Sluis A, et al. Recombinant human interleukin-4 inhibits growth of some human lung tumor cell lines in vitro and in vivo. Blood, 82: 2837–2844, 1993.

    CAS  PubMed  Google Scholar 

  48. Toi M, Bicknel R, Harris AL. Inhibition of colon and breast carcinoma cell growth by interleukin-4. Cancer Res, 52: 275–279, 1992.

    CAS  PubMed  Google Scholar 

  49. Obiri NI, Tandon N, Puri RK. Upregulation of intracellular adhesion molecule-1 on human renal cell carcinoma cells by interleukin-4. Int J Cancer, 61: 635–642, 1995.

    Article  CAS  PubMed  Google Scholar 

  50. Hillman GG, Puri RK, Kukuruga MA, et al. Growth and major histocompatibility antigen expression regulation by interleukin 4, interferon γ, and tumor necrosis factor a on human renal cell carcinoma. Clin Exp Immunol, 96: 476–483, 1994.

    Article  CAS  PubMed  Google Scholar 

  51. Hoon DSB, Banez M, Okun E, et al. Modulation of human melanoma cells by interleukin-4 and in combination with γ-interferon or α-tumor necrosis factor. Cancer Res, 51: 2002–2008, 1991.

    CAS  PubMed  Google Scholar 

  52. Hoon DSB, Okun E, Benez M, et al. Interleukin 4 alone with γ-interferon or tumor necrosis factor inhibits cell growth and modulates cell surface antigens on human renal cell carcinomas. Cancer Res, 51: 5687–5693, 1991.

    CAS  PubMed  Google Scholar 

  53. Levesque MC, Misukonis MA, O’Loughlin CW, et al. IL-4 and interferon gamma regulate expression of inducible nitric oxide synthase in chronic lymphocytic leukemia cells. Leukemia, 17: 442–450, 2003.

    Article  CAS  PubMed  Google Scholar 

  54. Lee SO, Lou W, Hou M, et al. Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene, 22: 7981–7988, 2003.

    Article  PubMed  CAS  Google Scholar 

  55. Myers JN, Yasumura S, Suminami Y, et al. Growth stimulation of human head and neck squamous cells carcinoma cell lines by interleukin 4. Clin Cancer Res, 2: 127–135, 1996.

    CAS  PubMed  Google Scholar 

  56. Stassi G, Todaro M, Zerilli M, et al. Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of interleukin-4 and interleukin-10. Cancer Res, 63: 6784–6790, 2003.

    CAS  PubMed  Google Scholar 

  57. Sasaki Y, Mita H, Toyota M, et al. Identification of the interleukin 4 receptor a gene as a direct target for p73. Cancer Res, 63: 8145–8152, 2003.

    CAS  PubMed  Google Scholar 

  58. Tepper RI, Pattengale PK, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell, 57: 503–512, 1989.

    Article  CAS  PubMed  Google Scholar 

  59. Tepper RI, Coffman RL, Leder P. An eosinophil-dependent mechanism for the anti-tumor effect of interleukin-4. Science, 257: 548–551, 1992.

    Article  CAS  PubMed  Google Scholar 

  60. Kawakami Y, Rosenberg SA, Lotze MT. Interleukin 4 promotes the growth of tumor-infiltrating lymphocytes cytotoxic for human autologous melanoma. J Exp Med, 168: 2183–2191, 1988.

    Article  CAS  PubMed  Google Scholar 

  61. Mule JJ, Smith CA, Rosenberg SA. Interleukin 4 (B cell stimulatory factor 1) can mediate the induction of lymphokine-activated killer cell activity directed against fresh tumor cells. J Exp Med, 166:792–797, 1987.

    Article  CAS  PubMed  Google Scholar 

  62. Puri RK, Finbloom DS, Leland P, et al. Expression of high-affinity IL-4 receptors on murine tumour infiltrating lymphocytes and their up-regulation by IL-2. Immunology, 70: 492–497, 1990.

    CAS  PubMed  Google Scholar 

  63. McAdam AJ, Pulaski BA, Storozynsky E, et al. Analysis of the effect of cytokines (interleukins 2, 3, 4, and 6, granulocyte-monocyte colony-stimulating factor, and interferon-gamma) on generation of primary cytotoxic T lymphocytes against a weakly immunogenic tumor. Cell Immunol, 165: 183–192, 1995.

    Article  CAS  PubMed  Google Scholar 

  64. Benedetti S, Pirola B, Poliani PL, et al. Dexamethasone inhibits the anti-tumor effect of interleukin 4 on rat experimental gliomas. Gene Ther, 10: 188–192, 2003.

    Article  CAS  PubMed  Google Scholar 

  65. Atkins MB, Vachino G, Tilg H, et al. Phase I evaluation of the daily intravenous bolus interleukin-4 in patients with refractory malignancy. J Clin Oncol, 10: 1802–1809, 1992.

    CAS  PubMed  Google Scholar 

  66. Gilleece MH, Scarffe JH, Ghosh A, et al. Recombinant human interleukin 4 (IL-4) given as daily subcutaneous injections-a phase I dose escalation toxicity trial. Br J Cancer, 66: 204–210, 1992.

    CAS  PubMed  Google Scholar 

  67. Prendiville J, Thatcher N, Lind M, et al. Recombinant human interleukin 4 (IL-4) administered by the intravenous and subcutaneous injections-a phase I toxicity study and pharmacokinetics analysis. Eur J Cancer, 29: 1799–1807, 1993.

    Article  Google Scholar 

  68. Whitehead RP, Friedman KDA, Clark DA, et al. Phase I trial of simultaneous administration of interleukin 2 and interleukin 4 subcutaneously. Clin Cancer Res, 1: 1145–1152, 1995.

    CAS  PubMed  Google Scholar 

  69. Vokes EE, Figlin R, Hochster H, et al. A phase II study of recombinant human interleukin-4 for advanced or recurrent non-small cell lung cancer. Cancer J Sci Am, 4: 46–51, 1998.

    CAS  PubMed  Google Scholar 

  70. Taylor CW, LeBlanc M, Fisher RI, et al. Phase II evaluation of interleukin-4 in patients with nonHodgkin’s lymphoma: A Southwest Oncology Group trial. Anti-Cancer Drugs, 11: 695–700, 2000.

    Article  CAS  PubMed  Google Scholar 

  71. Whitehead RP, Lew D, Flanigan RC, et al. Phase II trial of recombinant human interleukin-4 in patients with advanced renal cell carcinoma: A southwest oncology group study. J Immunother, 25:352–358, 2002.

    Article  CAS  PubMed  Google Scholar 

  72. Kiertscher SM, Gitlitz BJ, Figlin RA, et al. Granulocyte/macrophage-colony stimulating factor and interleukin-4 expand and activate type-1 dendritic cells (DC1) when administered in vivo to cancer patients. Int J Cancer, 107: 256–261, 2003.

    Article  CAS  PubMed  Google Scholar 

  73. Gitlitz BJ, Figlin RA, Kiertscher SM, et al. Phase I trial of granulocyte macrophage-colony stimulating factor and interleukin-4 as a combined immunotherapy for patients with cancer. J Immunother, 26: 171–178, 2003.

    Article  CAS  PubMed  Google Scholar 

  74. Okada H, Pollack IF, Lotze MT, et al. Gene therapy of malignant gliomas: A phase I study of IL-4-HSV-TK gene-modified autologous tumor to elicit an immune response. Hum Gene Ther, 11:637–653, 2000.

    Article  CAS  PubMed  Google Scholar 

  75. Okada H, Pollack IF, Lieberman F, et al. Gene therapy of malignant gliomas: A pilot study of vaccination with irradiated autologous glioma and dendritic cells mixed with IL-4 transduced fibroblasts to elicit an immune response. Hum Gene Ther, 12: 575–595, 2001.

    Article  CAS  PubMed  Google Scholar 

  76. Okada H, Lieberman FS, Edington HD, et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: Preliminary observations in a patient with a favorable response to therapy. J Neuro-Oncol, 64: 13–20, 2003.

    Google Scholar 

  77. Okada H, Kuwashima N. Gene therapy and biologic therapy with interleukin-4. Curr Gene Ther, 2:437–450, 2002.

    Article  CAS  PubMed  Google Scholar 

  78. Liu H, Jacobs BS, Liu J, et al. Interleukin-13 sensitivity and receptor phenotypes of human glial cell lines: Non-neoplastic glia and low-grade astrocytoma differ from malignant glioma. Cancer Immunol Immunother, 49: 319–324, 2000.

    Article  CAS  PubMed  Google Scholar 

  79. Murata T, Obiri NI, Puri RK. Human ovarian-carcinoma cell lines express IL-4 and IL-13 receptors: Comparison between IL-4-and IL-13-induced signal transduction. Int J Cancer, 70: 230–240, 1997.

    Article  CAS  PubMed  Google Scholar 

  80. Hu HM, Urba WJ, Fox BA. Gene-modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a type 2 to a type 1 cytokine profile. J Immunol, 161: 3033–3041, 1998.

    CAS  PubMed  Google Scholar 

  81. Bernard J, Treton D, Vermot-Desroches C, et al. Expression of interleukin 13 receptor in glioma and renal cell carcinoma: IL13Rα2 as a decoy receptor for IL13. Lab Invest, 81: 1223–1231, 2001.

    Article  CAS  PubMed  Google Scholar 

  82. Serve H, Oelmann E, Herweg A, et al. Inhibition of proliferation and clonal growth of human breast cancer cells by interleukin 13. Cancer Res, 56: 3583–3588, 1996.

    CAS  PubMed  Google Scholar 

  83. Biais Y, Zhao C, Huber M, et al. Growth-independent induction of spermidine transport by IL-4 and IL-13 in ZR-75-1 human breast cancer cells. Int J Cancer, 67: 532–538, 1996.

    Article  Google Scholar 

  84. Biais Y, Gingras S, Haagensen DE, et al. Interleukin-4 and interleukin-13 inhibit estrogen-induced breast cancer cell proliferation and stimulate GCDFP-15 expression in human breast cancer cells. Mol Cell Endocrinol, 121: 11–18, 1996.

    Article  Google Scholar 

  85. Lebel-Binay S, Laguerre B, Quintin-Colonna F, et al. Experimental gene therapy of cancer using tumor cells engineered to secrete interleukin-13. Eur J Immunol, 25: 2340–2348, 1995.

    Article  CAS  PubMed  Google Scholar 

  86. Kanai T, Watanabe M, Hayashi A, et al. Regulatory effect of interleukin-4 and interleukin-13 on colon cancer cell adhesion. Br J Cancer, 82: 1717–1723, 2000.

    Article  CAS  PubMed  Google Scholar 

  87. Riemann D, Kehlen A, Langner J. Stimulation of the expression and the enzyme activity of aminopeptidase N/CD13 and dipeptidylpeptidase IV/CD26 on human renal cell carcinoma cells and renal tubular epithelial cells by T cell-derived cytokines, such as IL-4 and IL-13. Clin Exp Immunol, 100: 277–283, 1995.

    Article  CAS  PubMed  Google Scholar 

  88. Huang M, Wang J, Lee P, et al. Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res, 55: 3847–3853, 1995.

    CAS  PubMed  Google Scholar 

  89. Kawakami M, Leland P, Kawakami K, et al. Mutation and functional analysis of IL-13 receptors in human malignant glioma cells. Oncol Res, 12: 459–467, 2001.

    CAS  PubMed  Google Scholar 

  90. Volpert OV, Fong T, Koch AE, et al. Inhibition of angiogenesis by interleukin 4. J Exp Med, 188:1039–1046, 1998.

    Article  CAS  PubMed  Google Scholar 

  91. Bruserud O. Effects of interleukin-13 on cytokine secretion by human acute myelogenous leukemia blasts. Leukemia, 10: 1497–1503, 1996.

    CAS  PubMed  Google Scholar 

  92. Bruserud O, Pawelec G. Interleukin-13 secretion by normal and posttransplant T lymphocytes; in vitro studies of cellular immune responses in the presence of acute leukemia blast cells. Cancer Immunol Immunother, 45: 45–52, 1997.

    Article  CAS  PubMed  Google Scholar 

  93. Benard N, Duvert V, Banchereau J, et al. Interleukin-13 inhibits the proliferation of normal and leukemic human B-cell precursors. Blood, 84: 2253–2260, 1994.

    Google Scholar 

  94. Fior R, Vita N, Raphael M et al. Interleukin-13 gene expression by malignant and EBV-transformed human B lymphocytes. Eur Cytokine Netw, 5: 593–600, 1994.

    CAS  PubMed  Google Scholar 

  95. Denizot Y, Turlure P, Bordessoule D, et al. Serum IL-10 and IL-13 concentrations in patients with haematological malignancies. Cytokine, 11: 634–635, 1999.

    Article  CAS  PubMed  Google Scholar 

  96. Kacha AK, Fallarino F, Markiewicz MA, et al. Spontaneous rejection of poorly immunogenic P1.HTR tumors by Stat-6 deficient mice. J Immunol, 165: 6024–6028, 2000.

    CAS  PubMed  Google Scholar 

  97. Ostrand-Rosenberg S, Grusby MJ, Clements VK. STAT6-deficient mice have enhanced tumor immunity to primary and metastatic mammary carcinoma. J Immunol, 165: 6015–6019, 2000.

    CAS  PubMed  Google Scholar 

  98. Ostrand-Rosenberg S, Clements VK, Terabe M, et al. Resistance to metastatic disease in STAT6-deficient mice requires hemopoietic and nonhemopoietic cells and is IFN-gamma dependent. J Immunol, 169: 5796–5804, 2002.

    CAS  PubMed  Google Scholar 

  99. Terabe M, Matsui S, Noben-Trauth N, et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol, 1: 515–520, 2000.

    Article  CAS  PubMed  Google Scholar 

  100. Terabe M, Matsui S, Park JM, et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD Id-restricted T cells block cyto toxic T lymphocyte-mediated tumor immunosurveillance: Abrogation prevents tumor recurrence. J Exp Med, 198: 1741–1752, 2003.

    Article  CAS  PubMed  Google Scholar 

  101. van Sandick JW, Boermeester MA, Gisbertz SS, et al. Lymphocyte subsets and Th1/Th2 immune responses in patients with adenocarcinoma of the oesophagus or oesophagogastric junction: Relation to pTNM stage and clinical outcome. Cancer Immunol Immunother, 52: 617–624, 2003.

    Article  PubMed  CAS  Google Scholar 

  102. Ito N, Nakamura H, Tanaka Y, et al. Lung carcinoma: Analysis of T helper type 1 and 2 cells and T cytotoxic type 1 and 2 cells by intracellular cytokine detection with flow cytometry. Cancer, 85:2359–2367, 1999.

    Article  CAS  PubMed  Google Scholar 

  103. Okano F, Storkus WJ, Chambers WH, et al. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor α2 chain. Clin Cancer Res, 8: 2851–2855, 2002.

    CAS  PubMed  Google Scholar 

  104. Idzerda RL, March CJ, Mosley B, et al. Human interleukin 4 receptor confers biological responsiveness and defines a novel receptor superfamily. J Exp Med, 171: 861–873, 1990.

    Article  CAS  PubMed  Google Scholar 

  105. Russell SM, Keegan AD, Harada N, et al. Interleukin-2 receptor gamma chain: A functional component of the interleukin-4 receptor. Science, 262: 1880–1883, 1993.

    Article  CAS  PubMed  Google Scholar 

  106. Kondo M, Takeshita T, Ishii N, et al. Sharing of interleukin-2 (IL-2) receptor gc chain between receptors for IL-2 and IL-4. Science, 262: 1874–1877, 1993.

    Article  CAS  PubMed  Google Scholar 

  107. Noguchi M, Nakamura Y, Russell SM, et al. Interleukin-2 receptor γ chain: A functional component of interleukin-7 receptor. Science, 262: 1877–1880, 1993.

    Article  CAS  PubMed  Google Scholar 

  108. Giri JG, Ahdieh M, Eisenman J, et al. Utilization of beta and gamma chains of the IL-2 receptor by novel cytokine IL-15. EMBO J, 13: 2822–2830, 1994.

    CAS  PubMed  Google Scholar 

  109. Aman MJ, Tayebi N, Obiri NI, et al. cDNA cloning and characterization of the human interleukin-13 receptor a chain. J Biol Chem, 271:29, 265–29270, 1996.

    Google Scholar 

  110. Obiri NI, Puri RK. Characterization of interleukin-4 receptors expressed on human renal cell carcinoma cells. Oncol Res, 6: 419–421, 1994

    CAS  PubMed  Google Scholar 

  111. Obiri NI, Siegel JP, Varricchio F, et al. Expression and function of high affinity interleukin-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol, 95: 148–155, 1994.

    Article  CAS  PubMed  Google Scholar 

  112. Murata T, Noguchi PD, Puri RK. Receptors for interleukin (IL)-4 do not associate with the common y chain, and IL-4 induce the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells. J Biol Chem, 270: 30,829–30,836, 1995.

    CAS  Google Scholar 

  113. Obiri NI, Debinski W, Leonard WJ, et al. Receptor for interleukin 13: Interaction with interleukin 4 by a mechanism that does not involve the common y chain shared by receptors for interleukins 2, 4, 7, 9, and 15. J Biol Chem, 270: 8797–8804, 1995.

    Article  CAS  PubMed  Google Scholar 

  114. Murata T, Taguchi J, Puri RK. Interleukin-13 receptor a’ chain but not a chain: A functional component of interleukin-4 receptor. Blood, 91: 3884–3891, 1998.

    CAS  PubMed  Google Scholar 

  115. Nelms K, Keegan AD, Zamorano J, et al. The IL-4 receptor: Signaling mechanisms and biologic functions. Annu Rev Immunol, 17: 701–738, 1999.

    Article  CAS  PubMed  Google Scholar 

  116. Murata T, Obiri NI, Puri RK. Structure of and signal transduction through interleukin 4 and interleukin 13 receptors. Int J Mol Med, 1: 551–557, 1998.

    CAS  PubMed  Google Scholar 

  117. Kelly-Welch AE, Hanson EM, Boothby MR, et al. Interleukin-4 and interleukin-13 signaling connections maps. Science, 300: 1527, 1528, 2003.

    Article  CAS  PubMed  Google Scholar 

  118. Holscher C. Interleukin-13: Genes, receptors and signal transduction. In: Interleukin-13, Ed. Brombacher F. Landes Bioscience, Georgetown, TX. pp. 1–8, 2003.

    Google Scholar 

  119. Hilton DJ, Zhang JG, Metcalf D, et al. Cloning and characterization of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor. Proc Natl Acad Sci USA, 93: 497–501, 1996.

    Article  CAS  PubMed  Google Scholar 

  120. Miloux B, Laurent P, Bonnin O, et al. Cloning of the human IL-13Ral chain and reconstitution with the IL-4Ra of a functional IL-4/IL-13 receptor complex. FEBS Lett, 401: 163–166, 1997.

    Article  CAS  PubMed  Google Scholar 

  121. Niu Y, Murata T, Watanabe K, et al. MIP-T3 associates with IL-13Ral and suppress STAT6 activation in response to IL-13 stimulation. FEBS Lett, 550: 139–143, 2003.

    Article  CAS  PubMed  Google Scholar 

  122. Caput D, Laurent P, Kaghad M, et al. Cloning and characterization of a specific interleukin (IL)-13 binding protein structurally related to the IL-5 receptor a chain. J Biol Chem, 271: 16,921–16,926, 1996.

    CAS  Google Scholar 

  123. Donaldson DD, Whitters MJ, Fitz LJ, et al. The murine IL-13 receptor a2: Molecular cloning, characterization, and comparison with murine IL-13 receptor ocl. J Immunol, 161: 2317–2324, 1998.

    CAS  PubMed  Google Scholar 

  124. Kawakami K, Puri RK. Interleukin-13 and cancer. In: Interleukin-13, Ed. Brombacher F, Landes Bioscience, Georgetown, TX, pp. 65–78, 2003.

    Google Scholar 

  125. Joshi BH, Plautz GE, Puri RK. IL-13 receptor a chain: A novel tumor associated transmembrane protein in primary explants of human malignant gliomas. Cancer Res, 60: 1168–1172, 2000.

    CAS  PubMed  Google Scholar 

  126. Joshi BH, Kawakami K, Leland P, et al. Heterogeneity in interleukin-13 receptor expression and subunit structure in squamous cell carcinoma of head and neck: Differential sensitivity to chimeric fusion proteins comprised of interleukin-13 and a mutated form of Pseudomonas exotoxin. Clin Cancer Res, 8: 1948–1956, 2002.

    CAS  PubMed  Google Scholar 

  127. Husain SR, Obiri NI, Gill P, et al. Receptor for interleukin 13 on AIDS-associated Kaposi’s sarcoma cells serves as a new target for a potent Pseudomonas exotoxin-based chimeric toxin protein. Clin Cancer Res, 3: 151–156, 1997.

    CAS  PubMed  Google Scholar 

  128. Kawakami M, Kawakami K, Kasperbauer JL, et al. Interleukin-13 receptor a2 chain in human head and neck cancer serves as a unique diagnostic marker. Clin Cancer Res, 9: 6381–6388, 2003.

    CAS  PubMed  Google Scholar 

  129. Kawakami K, Taguchi J, Murata T, et al. The interleukin-13 receptor a2 chain: An essential component for binding and internalization but not for interleukin-13-induced signal transduction through the STAT6 pathway. Blood, 97: 2673–2679, 2001.

    Article  CAS  PubMed  Google Scholar 

  130. Rahaman SO, Sharma P, Harbor PC, et al. IL-13R(x2, a decoy receptor for IL-13 acts as an inhibitor of IL-4-dependent signal transduction in glioblastoma cells. Cancer Res, 62: 1103–1109, 2002.

    CAS  PubMed  Google Scholar 

  131. Obiri NI, Murata T, Debinski W, et al. Modulation of interleukin (IL)-13 binding and signaling by thejc chain of the IL-2 receptor. J Biol Chem, 272: 20, 251–20,258, 1997.

    Article  CAS  Google Scholar 

  132. Kuznetsov VA, Puri RK. Kinetic analysis of high affinity forms of interleukin (IL)-13 receptors: suppression of IL-13 binding by IL-2 receptor y chain. Biophys J, 77: 154–172, 1999.

    Article  CAS  PubMed  Google Scholar 

  133. Pastan I, Chaudhary V, FitzGerald DJ. Recombinant toxins as novel therapeutic agents. Annu Rev Biochem, 61: 331–354, 1992.

    Article  CAS  PubMed  Google Scholar 

  134. Puri RK, Ogata M, Leland P, et al. Expression of high affinity IL4 receptors on murine sarcoma cells and receptor mediated cytotoxicity of tumor cells to chimeric protein between IL-4 and Pseudomonas extoxin. Cancer Res, 51: 3011–3017, 1991.

    CAS  PubMed  Google Scholar 

  135. Puri RK, Leland P, Kreitman RJ, et al. Human neurological cancer cells express interleukin-4 (IL-4) receptors which are targets for the toxic effects of IL4-Pseudomonas exotoxin chimeric protein. Int J Cancer, 58: 574–581, 1994.

    Article  CAS  PubMed  Google Scholar 

  136. Kawakami K, Kawakami M, Puri RK. Overexpressed cell surface interleukin-4 receptor molecules can be successfully targeted for anti-tumor cytotoxin therapy. Crit Rev Immunol, 21: 299–310, 2001.

    CAS  PubMed  Google Scholar 

  137. Kawakami M, Kawakami K, Puri RK. Interleukin-4-Pseudomonas exotoxin chimeric fusion protein for malignant glioma therapy. J Neuro-Oncol, 65: 15–25, 2003.

    Article  Google Scholar 

  138. Kreitman RJ, Puri RK, Pastan I. A circularly permuted recombinant interleukin 4 toxin with increased activity. Proc Natl Acad Sci USA, 91: 6889–6893, 1994.

    Article  CAS  PubMed  Google Scholar 

  139. Kreitman RJ, Puri RK, Pastan I. Increased anti-tumor activity of a circularly permuted interleukin 4-toxin in mice with interleukin 4 receptor-bearing human carcinoma. Cancer Res, 55: 3357–3363, 1995.

    CAS  PubMed  Google Scholar 

  140. Puri RK, Hoon DS, Leland P, et al. Preclinical development of a recombinant toxin containing circularly permuted interleukin-4 and truncated Pseudomonas exotoxin for therapy of malignant astrocytoma, Cancer Res, 56: 5631–5637, 1996.

    CAS  PubMed  Google Scholar 

  141. Puri RK, Leland P, Obiri NI, et al. An improved circularly permuted interleukin 4-toxin is highly cytotoxic to human renal cell carcinoma cells. Cell Immunol, 171: 80–86, 1996.

    Article  CAS  PubMed  Google Scholar 

  142. Husain SR, Gill P, Kreitman RJ, et al. Interleukin-4 receptor expression on AIDS-associated Kaposi’s sarcoma cells and their targeting by a chimeric protein comprised of circularly permuted interleukin-4 and Pseudomonas exotoxin. Mol Med, 3: 327–338, 1997.

    CAS  PubMed  Google Scholar 

  143. Husain SR, Kreitman RJ, Pastan I, et al. Interleukin-4 receptor-directed cytotoxin therapy of AIDS-associated Kaposi’s sarcoma tumors in xenografted model. Nat Med, 5: 817–822, 1999.

    Article  CAS  PubMed  Google Scholar 

  144. Leland P, Taguchi J, Husain SR, et al. Human breast carcinoma cells express type II IL-4 receptors and are sensitive to anti-tumor activity of a chimeric IL-4-Pseudomonas exptoxin fusion protein in vitro and in vivo. Mol Med, 6: 165–178, 2000.

    CAS  PubMed  Google Scholar 

  145. Husain SR, Behari N, Kreitman RJ, et al. Complete regression of established human glioblastoma tumor xenograft by interleukin-4 toxin therapy. Cancer Res, 58: 3649–3653, 1998.

    CAS  PubMed  Google Scholar 

  146. Kawakami M, Kawakami K, Stepensky VA, et al. Interleukin 4 receptor on human lung cancer: A molecular target for cytotoxin therapy. Clin Cancer Res, 8: 3503–3511, 2002.

    CAS  PubMed  Google Scholar 

  147. Strome SE, Kawakami K, Alejandro D, et al. Interleukin 4 receptor-directed cytotoxin therapy for human head and neck squamous cell carcinoma in animal models. Clin Cancer Res, 8: 281–286, 2002.

    CAS  PubMed  Google Scholar 

  148. Husain SR, Kawakami K, Kawakami M, et al. Interleukin-4 receptor-targeted cytotoxin therapy of androgen-dependent and-independent prostate carcinoma in xenograft models. Mol Cancer Ther, 2:245–254, 2003.

    CAS  PubMed  Google Scholar 

  149. Kawakami K, Kawakami M, Husain SR, et al. Effect of interleukin-4 cytotoxin on breast tumor growth after in vivo gene transfer of IL-4Rα chain. Clin Cancer Res, 9: 1826–1836, 2003.

    CAS  PubMed  Google Scholar 

  150. Kawakami K, Kawakami M, Husain SR, et al. Targeting interleukin-4 receptors for effective pancreatic cancer therapy. Cancer Res, 62: 3575–3580, 2002.

    CAS  PubMed  Google Scholar 

  151. Rand RW, Kreitman RJ, Patronas N, et al. Intratumoral administration of recombinant circularly permuted Interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res, 6:2157–2165, 2000.

    CAS  PubMed  Google Scholar 

  152. Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery to macromolecules in the brain. Proc Natl Acad Sci USA, 91: 2076–2080, 1994.

    Article  CAS  PubMed  Google Scholar 

  153. Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med, 3: 1362–1368, 1997.

    Article  CAS  PubMed  Google Scholar 

  154. Weber F, Asher A, Bucholz R, et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neuro-Oncol, 64: 125–137, 2003.

    Google Scholar 

  155. Weber FW, Floeth F, Asher A, et al. Local convection enhanced delivery of IL4-Pseudomonas exotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma. Acta Neurochir Suppl, 88: 93–103, 2003.

    CAS  PubMed  Google Scholar 

  156. Rainov NG, Heidecke V. Long term survival in a patient with recurrent malignant glioma treated with intratumoral infusion of an IL4-targeted toxin (NBI-3001). J Neuro-Oncol, 66; 197–201, 2004.

    Article  CAS  Google Scholar 

  157. Garland L, Gitlitz B, Ebbinghaus S, et al. Phase I trial of intravenous IL-4 Pseudomonas exotoxin protein (NBI-3001) in patients with advanced solid tumors that express the IL-4 receptor. J Immunother 28: 376–381, 2005.

    Article  CAS  PubMed  Google Scholar 

  158. Maini A, Hillman G, Haas GP, et al. Interleukin-13 receptors on human prostate carcinoma cell lines represent a novel target for a chimeric protein composed of IL-13 and a mutated form of Pseudomonas exotoxin. J Urol, 158: 948–953, 1997.

    Article  CAS  PubMed  Google Scholar 

  159. Debinski W, Obiri NI, Pastan I, et al. A novel chimeric protein composed of interleukin 13 and Pseudomonas exotoxin is highly cytotoxic to human carcinoma cells expressing receptors for interleukin 13 and interleukin 4. J Biol Chem, 270: 16,775–16,780, 1995.

    Article  CAS  Google Scholar 

  160. Puri RK, Leland P, Obiri NI, et al. Targeting of interleukin-13 receptor on human renal cell carcinoma cells by a recombinant chimeric protein composed of interleukin-13 and a truncated form of Pseudomonas exotoxin A (PE38QQR). Blood, 87: 4333–4339, 1996.

    CAS  PubMed  Google Scholar 

  161. Husain SR, Puri RK. Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: From bench to bedside. J Neuro-Oncol, 65: 37–48, 2003.

    Article  Google Scholar 

  162. Debinski W, Obiri NI, Powers SK, et al. Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin Cancer Res, 1: 1253–1258, 1995.

    CAS  PubMed  Google Scholar 

  163. Kawakami M, Kawakami K, Puri RK. Apoptotic pathways of cell death induced by an interleukin-13 receptor-targeted recombinant cytotoxin in head and neck cancer cells. Cancer Immunol Immunother, 50: 691–700, 2002.

    Article  CAS  PubMed  Google Scholar 

  164. Husain SR, Puri RK. Interleukin-13 fusion cytotoxin as a potent targeted agent for AIDS-Kaposi’s sarcoma xenograft. Blood, 95: 3506–3513, 2000.

    CAS  PubMed  Google Scholar 

  165. Husain SR, Joshi BH, Puri RK. Interleukin-13 receptor as a unique target for anti-glioblastoma therapy. Int J Cancer, 92: 168–175, 2001.

    Article  CAS  PubMed  Google Scholar 

  166. Ishii KJ, Kawakami K, Gursel I, et al. Anti-tumor therapy with bacterial DNA and toxin: Complete regression of established tumor by liposomal CpG ODN plus IL-13 cytotoxin. Clin Cancer Res, 9:6516–6522, 2003.

    CAS  PubMed  Google Scholar 

  167. Kawakami K, Kawakami M, Joshi BH, et al. Interleukin-13 receptor targeted cancer therapy in an immunodeficient animal model of human head and neck cancer. Cancer Res, 61: 6194–6200, 2001.

    CAS  PubMed  Google Scholar 

  168. Kawakami K, Husain SR, Kawakami M, et al. Improved anti-tumor activity and safety of interleukin-13 receptor targeted cytotoxin by systemic continuous administration in head and neck cancer xenograft model. Mol Med, 8: 487–492, 2002.

    CAS  PubMed  Google Scholar 

  169. Kawakami M, Kawakami K, Puri RK. Intratumoral administration of interleukin 13 receptor-targeted cytotoxin induces apoptotic cell death in human malignant glioma tumor xenografts. Mol Cancer Ther, 1: 999–1007, 2002.

    CAS  PubMed  Google Scholar 

  170. Kawakami M, Kawakami K, Puri RK. Tumor regression mechanisms by interleukin-13 receptor-targeted cancer therapy involve apoptotic pathways. Int J Cancer, 103: 45–52, 2003.

    Article  CAS  PubMed  Google Scholar 

  171. Li C, Hall WA, Jin N, et al. Targeting glioblastoma multiforme with an IL-13/diphtheria toxin fusion protein in vitro and in vivo in nude mice. Protein Eng, 15: 419–427, 2002.

    Article  PubMed  Google Scholar 

  172. Weingart J, Strauss LC, Grossman SA, et al. Phase I/II study: intratumoral infusion of IL13-PE38QQR cytotoxin for recurrent supratentorial malignant glioma. Neuro-oncol, 4: 379, 2002.

    Google Scholar 

  173. Prados M, Lang F, Strauss L, et al. Pre and post-resection interstitial infusions of IL13-PE38QQR cytotoxin: Phase I study in recurrent respectable malignant glioma. First Qudrennial meeting-World Federation of Neuro-Oncology, Washington, DC, November 15–17, 2001.

    Google Scholar 

  174. Lang F, Kunwar S, Strauss L, et al. A clinical study of convection-enhanced delivery of IL13-PE38QQR cytotoxin preand post-resection of recurrent GBM. 70th annual meeting of the American Association of Neurological Surgeons (AANS), Chicago, IL, April 6–11, 2002.

    Google Scholar 

  175. Kunwar S, Prados M, Chang S, et al. Peritumoral convection-enhanced delivery of IL13-PE38QQR in patients with recurrent malignant glioma — Phase I interim results. Society of Neuro-oncology annual meeting, 2003.

    Google Scholar 

  176. Ram Z, Mehdorn M, Westphal M, et al. Phase I/II study of intratumoral convection-enhanced delivery of IL13-PE38QQR cytotoxin for recurrent malignant glioma followed by planned tumor resection. Society of Neuro-oncology annual meeting, Abstract. 403, 2003.

    Google Scholar 

  177. Kawakami K, Takeshita F, Puri RK. Identification of distinct roles for a dileucine and a tyrosine internalization motif in the interleukin (IL)-13 binding component IL-13 receptor a2 chain. J Biol Chem, 276:25,114–25,120, 2001.

    CAS  Google Scholar 

  178. Kawakami K, Joshi BH, Puri RK. Sensitization of cancer cells to interleukin-13-Pseudomonas exotoxin induced cell death by gene transfer of IL-13 receptor a chain. Hum Gene Ther, 11: 1829–1835, 2000.

    Article  CAS  PubMed  Google Scholar 

  179. Kawakami K, Husain SR, Bright RK, et al. Gene transfer of interleukin 13 receptor α2 chain dramatically enhances the anti-tumor effect of IL-13 receptor-targeted cytotoxin in human prostate cancer xenografts. Cancer Gene Ther, 8: 861–868, 2001.

    Article  CAS  PubMed  Google Scholar 

  180. Kawakami K, Kawakami M, Puri RK. Cytokine receptor as a sensitizer for targeted cancer therapy. Anti-Cancer Drugs, 13: 693–699, 2002.

    Article  CAS  PubMed  Google Scholar 

  181. Kawakami K, Kawakami M, Puri RK. Interleukin-13 receptor-targeted cytotoxin cancer therapy leads to complete eradication of tumors with the aid of phagocytic cells in nude mice model of human cancer. J Immunol, 169: 7119–7126, 2002.

    CAS  PubMed  Google Scholar 

  182. Kawakami K, Kawakami M, Husain SR, et al. Potent anti-tumor activity of IL-13 cytotoxin in human pancreatic tumors engineered to express IL-13 receptor α2 chain in vivo. Gene Ther, 10: 1116–1128, 2003.

    Article  CAS  PubMed  Google Scholar 

  183. Kawakami K, Kawakami M, Puri RK. Specifically targeted killing of interleukin-13 receptorexpressing breast cancer by IL-13 fusion cytotoxin in animal model of human disease. Mol Cancer Ther, 3: 137–147, 2003.

    Google Scholar 

  184. Kawakami K, Leland P, Puri RK. Structure, function, and targeting of interleukin 4 receptors on human head and neck carcinoma cells. Cancer Res, 60: 2981–2987, 2000.

    CAS  PubMed  Google Scholar 

  185. Obiri N, Leland P, Murata T, et al. The IL-13 receptor structure differs on various cell types and may share more than one component with IL-4 receptor. J Immunol, 158: 756–764, 1997.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Kawakami, K., Puri, R.K. (2007). Interleukin-4/13 and Cancer. In: Caligiuri, M.A., Lotze, M.T. (eds) Cytokines in the Genesis and Treatment of Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-455-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-455-1_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-820-2

  • Online ISBN: 978-1-59745-455-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics