Skip to main content

Circuit Designs That Model the Properties of the Outer and Inner Retina

  • Chapter

Part of the book series: Ophthalmology Research ((OPHRES))

Abstract

One goal of understanding neural systems is to develop prosthetic devices that can someday be used to replace lesioned neural tissue. For such prosthesis to be practical, the device must perform these computations as efficiently as, and at a physical scale comparable with the lesioned network, and should adapt its properties over time, independent of external control. The approach to design a successful prosthesis that faithfully replicates the computations performed by a neural circuit is based on a detailed understanding of that circuit’s anatomic connections and functional computations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sterling P. Retina. In: Shepherd GM, ed. Synaptic organization of the brain, 4th ed., New York: Oxford University Press, NY, 1998.

    Google Scholar 

  2. van Hateren J. A theory of maximizing sensory information. Biol Cybernetics 1992;68:23–29.

    Article  Google Scholar 

  3. Rizzo JFr, Wyatt J, Humayun M, et al. Retinal prosthesis: An encouraging first decade with major challenges ahead. Opthalmology 2001;108:13–14.

    Article  Google Scholar 

  4. Margalit E, Maia M, Weiland JD, et al. Retinal prosthesis for the blind. Surv of Ophthalmol 2002;47:335–356.

    Article  Google Scholar 

  5. Humayun MS, de Juan EJ, Weiland JD, et al. Pattern electrical stimulation of the human retina. Vision Res 1999;39:2569–2576.

    Article  PubMed  CAS  Google Scholar 

  6. Chow AY, Pardue MT, Chow VY, et al. Implantation of silicon chip microphotodiode arrays in the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 2001;9:86–95.

    Article  PubMed  CAS  Google Scholar 

  7. Normann RA, Maynard EM, Rousche PJ, Warren DJ. A neural interface for a cortical vision prosthesis. Vision Res 1999;39:2577–2587.

    Article  PubMed  CAS  Google Scholar 

  8. Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 1999;46:3–9.

    Article  Google Scholar 

  9. Mead CA. Analog VLSI and neural systems, Addison Wesley, Reading, MA, 1989.

    Google Scholar 

  10. Mahowald M, Mead C. A silicon model of early visual processing. Neural Networks 1988;1.

    Google Scholar 

  11. Baccus SA, Meister M. Fast and slow contrast adaptation in retinal circuitry. Neuron 1997;36:909–919.

    Article  Google Scholar 

  12. Masland R. The fundamental plan of the retina. Nature Neurosci 2001;4:877–886.

    Article  PubMed  CAS  Google Scholar 

  13. Boahen K. A retinomorphic chip with parallel pathways: Encoding Incresing, On, Decreasing, and Off visual signals. J Analog Integrated Circtuits Signal Processing 2001;30(2).

    Google Scholar 

  14. Boahen KA, Andreou AG. A contrast sensitive silicon retina with reciprocal synapses. In: Moody JE, Hanson SJ, Lippmann RP, eds. Advances in neural information processing systems. Vol. 4, Morgan Kaufmann, San Mateo, CA, 764–772.

    Google Scholar 

  15. Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R. Hemichannel-mediated inhibition in the outer retina. Science 2001;292:1178–1180.

    Article  PubMed  CAS  Google Scholar 

  16. Kamermans M, Werblin F. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J Neurosci 1992;12:2451–2463.

    PubMed  CAS  Google Scholar 

  17. Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Neurophysiol 1953;16:37–68.

    PubMed  CAS  Google Scholar 

  18. Werblin FS, Dowling JE. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol 1969;32:339–355.

    PubMed  CAS  Google Scholar 

  19. Rodieck RW. The primate retina. Comp Primate Biol 1988;4:203–278.

    Google Scholar 

  20. Enroth-Cugell C, Freeman AW. The receptive field spatial structure of cat retinal Y cells. J Physiol 1987;384:49–79.

    PubMed  CAS  Google Scholar 

  21. Zaghloul KA, Boahen K. Optic nerve signals in a neuromorphic chip I: Outer and inner retina models. IEEE Trans Biomed Eng 2004;51:657–666.

    Article  PubMed  Google Scholar 

  22. Normann RA, Perlman I. The effect of background illumination on the photoresponses of rod and green cones. J Physiol 1979;286:491–507.

    PubMed  CAS  Google Scholar 

  23. Tsividis YP. Operation and modeling of the MOS transistor. New York: McGraw-Hill Book Company, 1987.

    Google Scholar 

  24. Roska B, Werblin F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 2001;410:583–587.

    Article  PubMed  CAS  Google Scholar 

  25. Maguire G, Lukasiewicz P. Amacrine cell interactions underlying the response to change in tiger salamander retina. J Neurosci 1989;9:726–735.

    PubMed  CAS  Google Scholar 

  26. Kolb H, Nelson R. OFF-alpha and OFF-beta ganglion cells in cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains. J Comp Neurol 1993;329:85–110.

    Article  PubMed  CAS  Google Scholar 

  27. Freed MA, Pflug R, Kolb H, Nelson R. On-Off amacrine cells in cat retina. J Comp Neur 1996;364:556–566.

    Article  PubMed  CAS  Google Scholar 

  28. Shapley R, Victor JD. The contrast gain control of the cat retina. Vision Res 1979;19:431–434.

    Article  PubMed  CAS  Google Scholar 

  29. Victor JD. The dynamics of cat retinal X cell centre. J Physiol 1987;386:219–246.

    PubMed  CAS  Google Scholar 

  30. Zaghloul KA, Boahen K. An On-Off log domain circuit that recreates adaptive filtering in the retina. IEEE Trans Circuits Syst 2005;52:99–107.

    Google Scholar 

  31. Boahen KA. The retinomorphic approach: Pixel-parallel adaptive amplification, filtering, and quantization. J Analog Integrated Circtuits Signal Processing 1997;13:53–68.

    Article  Google Scholar 

  32. Smith RG. Simulation of an anatomically defined local circuit—The cone-horizontal cell network in cat retina. Visual Neurosci 1995;12:545–561.

    Article  CAS  Google Scholar 

  33. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neur 1990;292:497–523.

    Article  PubMed  CAS  Google Scholar 

  34. Boahen KA. Point-to-point connectivity between neuromorphic chips using address-events. IEEE Trans Circuits Syst 1999;47:100–116.

    Google Scholar 

  35. Rodieck R. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res 1965;5:583–601.

    Article  PubMed  CAS  Google Scholar 

  36. Enroth-Cugell C, Robson JG. The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 1966;187:517–552.

    PubMed  CAS  Google Scholar 

  37. Demb JB, Zaghloul KA, Haarsma L, Sterling P. Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. J Neurosci 2001;21:7447–7454.

    PubMed  CAS  Google Scholar 

  38. Frishman LJ, Freeman AW, Troy JB, Schweitzer-Tong DE, Enroth-Cugell C. Spatiotemporal frequency responses of cat retinal ganglion cells. J Gen Physiol 1987;89:599–628.

    Article  PubMed  CAS  Google Scholar 

  39. Troy JB, Enroth-Cugell C. X and Y ganglion cells inform the cat’s brain about contrast in the retinal image. Exp Brain Res 1993;93:383–390.

    Article  PubMed  CAS  Google Scholar 

  40. Zaghloul KA, Boahen K. Optic nerve signals in a neuromorphic chip II: Testing and results. IEEE Trans Biomed Eng 2004;51:667–675.

    Article  PubMed  Google Scholar 

  41. Dowling JE, Boycott BB. Organization of the primate retina: electron microscopy. Proc R Soc Lond B 1966;166:80–111.

    PubMed  CAS  Google Scholar 

  42. Jensen RJ, Daw NW. Effects of dopamine and its agonists and antagonists on the receptive field properties of ganglion cells in the rabbit retina. Neuroscience 1986;17:837–855.

    Article  PubMed  CAS  Google Scholar 

  43. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002;295:1070–1073.

    Article  PubMed  CAS  Google Scholar 

  44. Ames A, Li YY, Heher EC, Kimble CR. Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 1992;12:840–853.

    PubMed  CAS  Google Scholar 

  45. Freed MA, Sterling P. The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. J Neurosci 1988;8:2303–2320.

    PubMed  CAS  Google Scholar 

  46. Craelius W. The bionic man: Restoring mobility. Science 2002;295:1018–1021.

    Article  PubMed  CAS  Google Scholar 

  47. Zrenner E. Will retinal implants restore vision. Science 2002;295:1022–1025.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa NJ

About this chapter

Cite this chapter

Zaghloul, K.A., Boahen, K. (2007). Circuit Designs That Model the Properties of the Outer and Inner Retina. In: Tombran-Tink, J., Barnstable, C.J., Rizzo, J.F. (eds) Visual Prosthesis and Ophthalmic Devices. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-449-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-449-0_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-16-9

  • Online ISBN: 978-1-59745-449-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics