Skip to main content

The Basics of Oxidative Biochemistry

  • Chapter

Part of the book series: Aging Medicine ((AGME))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sawyer DT. Oxygen chemistry. New York: Oxford University Press; 1991.

    Google Scholar 

  2. Sawyer DT. Oxygen: inorganic chemistry. In: King RB, ed. Encyclopedia of inorganic chemistry. Chichester: John Wiley & Sons; 1994:2947–88.

    Google Scholar 

  3. Halliwell B, Gutteridge J. Free radicals in biology and medicine, 3rd edn. New York: Oxford University Press; 1999.

    Google Scholar 

  4. Bielski BHJ. Reactivity of HO2/O2 •− radicals in aqueous solution. J Phys Chem Ref Data 1985;14(4):1041–91.

    Article  CAS  Google Scholar 

  5. Afanas'ev IB. Superoxide anion: chemistry and biological implications. Boca Raton, Florida: CRC Press; 1989.

    Google Scholar 

  6. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59(3):527–605.

    PubMed  CAS  Google Scholar 

  7. Muller F. The nature and mechanism of superoxide production by the electron transport chain: its relevance to aging. J Am Aging Assoc 2000;23:227–53.

    CAS  Google Scholar 

  8. Sawyer DT, Valentine JS. How super is superoxide? Acc Chem Res 1981;14:393–400.

    Article  CAS  Google Scholar 

  9. Li Y, Huang TT, Carlson EJ, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11(4):376–81.

    Article  PubMed  CAS  Google Scholar 

  10. Lebovitz RM, Zhang H, Vogel H, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A 1996;93(18):9782–7.

    Article  PubMed  CAS  Google Scholar 

  11. van Loon AP, Pesold-Hurt B, Schatz G. A yeast mutant lacking mitochondrial manga-nese-superoxide dismutase is hypersensitive to oxygen. Proc Natl Acad Sci U S A 1986;83(11):3820–4.

    Article  PubMed  Google Scholar 

  12. Longo VD, Liou LL, Valentine JS, Gralla EB. Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 1999;365(1):131–42.

    Article  PubMed  CAS  Google Scholar 

  13. Longo VD, Gralla EB, Valentine JS. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 1996;271(21):12275ȓ80.

    Article  PubMed  CAS  Google Scholar 

  14. Guidot DM, McCord JM, Wright RM, Repine JE. Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo. J Biol Chem 1993;268(35):26699–703.

    PubMed  CAS  Google Scholar 

  15. Gralla EB, Valentine JS. Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacteriol 1991;173(18):5918–20.

    PubMed  CAS  Google Scholar 

  16. Duttaroy A, Paul A, Kundu M, Belton A. A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 2003;165(4):2295–9.

    PubMed  CAS  Google Scholar 

  17. Reveillaud I, Phillips J, Duyf B, Hilliker A, Kongpachith A, Fleming JE. Phenotypic rescue by a bovine transgene in a Cu/Zn superoxide dismutase-null mutant of Drosophila mela-nogaster. Mol Cell Biol 1994;14(2):1302ȓ7.

    PubMed  CAS  Google Scholar 

  18. Liochev SI, Fridovich I. Reversal of the superoxide dismutase reaction revisited. Free Radic Biol Med 2003;34(7):908–10.

    Article  PubMed  CAS  Google Scholar 

  19. Srinivasan C, Liba A, Imlay JA, Valentine JS, Gralla EB. Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. J Biol Chem 2000;275(38):29187–92.

    Article  PubMed  CAS  Google Scholar 

  20. Liochev SI, Fridovich I. The Haber-Weiss cycle-70 years later: an alternative view. Redox Rep 2002;7(1):55–7; author reply 9–60.

    Article  PubMed  CAS  Google Scholar 

  21. Bielski BH, Arudi RL, Sutherland MW A study of the reactivity of HO2/O2 •− with unsatu- rated fatty acids. J Biol Chem 1983;258(8):4759–61.

    PubMed  CAS  Google Scholar 

  22. Antunes F, Salvador A, Marinho HS, Alves R, Pinto RE. Lipid peroxidation in mitochondrial inner membranes. I. An integrative kinetic model. Free Radic Biol Med 1996;21(7):917–43.

    Article  PubMed  CAS  Google Scholar 

  23. Aikens J, Dix TA. Perhydroxyl radical (HOO∙) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J Biol Chem 1991;266(23):15091–8.

    PubMed  CAS  Google Scholar 

  24. Winterbourn CC, Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 1999;27(3–4):322–8.

    Article  PubMed  CAS  Google Scholar 

  25. Winterbourn CC, Kettle AJ. Radical-radical reactions of superoxide: a potential route to toxicity. Biochem Biophys Res Commun 2003;305(3):729ȓ36.

    Article  PubMed  CAS  Google Scholar 

  26. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 1990;87(4):1620–4.

    Article  PubMed  CAS  Google Scholar 

  27. Lymar SV, Hurst JK. Radical nature of peroxynitrite reactivity. Chem Res Toxicol 1998;11(7):714–5.

    Article  PubMed  CAS  Google Scholar 

  28. Liochev SI, Fridovich I. The relative importance of HO and ONOO in mediating the toxicity of O2 •−. Free Radic Biol Med 1999;26(5ȓ6):777–8.

    PubMed  CAS  Google Scholar 

  29. Liochev SI, Fridovich I. Second order rate constants: a cautionary note. Free Radic Biol Med 2003;35(7):833.

    Article  PubMed  CAS  Google Scholar 

  30. Fontecave M. Ribonucleotide reductases and radical reactions. Cell Mol Life Sci 1998;54(7):684–95.

    Article  PubMed  CAS  Google Scholar 

  31. Gaudu P, Niviere V, Petillot Y, Kauppi B, Fontecave M. The irreversible inactivation of ribonucleotide reductase from Escherichia coli by superoxide radicals. FEBS Lett 1996;387(2–3):137–40.

    Article  PubMed  CAS  Google Scholar 

  32. Okado-Matsumoto A, Fridovich I. The role of alpha,beta-dicarbonyl compounds in the toxicity of short chain sugars. J Biol Chem 2000;275(45):34853–7.

    Article  PubMed  CAS  Google Scholar 

  33. Mashino T, Fridovich I. Superoxide radical initiates the autoxidation of dihydroxyacetone. Arch Biochem Biophys 1987;254(2):547–51.

    Article  PubMed  CAS  Google Scholar 

  34. Sutton HC, Roberts PB, Winterbourn CC. The rate of reaction of superoxide radical ion with oxyhaemoglobin and methaemoglobin. Biochem J 1976;155(3):503–10.

    PubMed  CAS  Google Scholar 

  35. Gus'kova RA, Ivanov, II, Kol'tover VK, Akhobadze VV, Rubin AB. Permeability of bilayer lipid membranes for superoxide (O2 •−) radicals. Biochim Biophys Acta 1984;778(3):579–85.

    Article  PubMed  Google Scholar 

  36. Takahashi MA, Asada K. Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 1983;226(2):558–66.

    Article  PubMed  CAS  Google Scholar 

  37. Baty JW, Hampton MB, Winterbourn CC. Proteomic detection of hydrogen peroxide-sensitivethiol proteins in Jurkat cells. Biochem J 2005;389(Pt 3):785ȓ95.

    PubMed  CAS  Google Scholar 

  38. Janero DR, Hreniuk D, Sharif HM. Hydroperoxide-induced oxidative stress impairs heart muscle cell carbohydrate metabolism. Am J Physiol 1994;266:C179–C188.

    PubMed  CAS  Google Scholar 

  39. Cochrane CG. Cellular injury by oxidants. Am J Med 1991;91(3C):23S–30S.

    Article  PubMed  CAS  Google Scholar 

  40. Mahadev K, Zilbering A, Zhu L, Goldstein BJ. Insulin-stimulated hydrogen peroxide revers-ibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 2001;276(24):21938–42.

    Article  PubMed  CAS  Google Scholar 

  41. Lee SR, Kwon KS, Kim SR, Rhee SG Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 1998;273(25):15366–72.

    Article  PubMed  CAS  Google Scholar 

  42. Koppenol WH. The Haber-Weiss cycle−70 years later. Redox Rep 2001;6(4):229–34.

    Article  PubMed  CAS  Google Scholar 

  43. Czapski G, Goldstein S. When do metal complexes protect the biological system from superoxide toxicity and when do they enhance it? Free Radic Res Commun 1986;1(3):157–61.

    Article  PubMed  CAS  Google Scholar 

  44. Liochev SL. The role of iron-sulfur clusters in in vivo hydroxyl radical production. Free Radic Res 1996;25(5):369–84.

    Article  PubMed  CAS  Google Scholar 

  45. Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique. J Hazard Mater 2003;98(1–3):33–50.

    Article  PubMed  CAS  Google Scholar 

  46. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007;43(4):477–503.

    Article  PubMed  CAS  Google Scholar 

  47. Fridovich I. Mitochondria: are they the seat of senescence? Aging Cell 2004;3(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  48. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969;244(22):6049–55.

    PubMed  CAS  Google Scholar 

  49. Carlsson LM, Jonsson J, Edlund T, Marklund SL. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U S A 1995;92(14):6264–8.

    Article  PubMed  CAS  Google Scholar 

  50. Weisiger RA, Fridovich I. Mitochondrial superoxide simutase. Site of synthesis and intrami-tochondrial localization. J Biol Chem 1973;248(13):4793–6.

    PubMed  CAS  Google Scholar 

  51. Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996;13(1):43–7.

    Article  PubMed  CAS  Google Scholar 

  52. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (sod) in rat liver. Cu,Zn-SOD in mitochondria. J Biol Chem 2001;276(42):38388–93.

    Article  PubMed  CAS  Google Scholar 

  53. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, ccs, localize to the intermembrane space of mitochondria. A physiological role for sod1 in guarding against mitochondrial oxidative damage. J Biol Chem 2001;276(41):38084–9.

    PubMed  CAS  Google Scholar 

  54. Weisiger RA, Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem 1973;248(10):3582–92.

    PubMed  CAS  Google Scholar 

  55. Liochev SI, Fridovich I. Copper,zinc superoxide dismutase as a univalent NO(−) oxidoreduct-ase and as a dichlorofluorescein peroxidase. J Biol Chem 2001;276(38):35253–7.

    Article  PubMed  CAS  Google Scholar 

  56. Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature 1993;364(6438):584.

    Article  PubMed  CAS  Google Scholar 

  57. Winterbourn CC, Peskin AV, Parsons-Mair HN. Thiol oxidase activity of copper, zinc super-oxide dismutase. J Biol Chem 2002;277(3):1906–11.

    Article  PubMed  CAS  Google Scholar 

  58. Liochev SI, Fridovich I. Mutant Cu,Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses. Free Radic Biol Med 2003;34(11):1383–9.

    Article  PubMed  CAS  Google Scholar 

  59. Ogata M. Acatalasemia. Hum Genet 1991;86(4):331–40.

    Article  PubMed  CAS  Google Scholar 

  60. Ho YS, Xiong Y, Ma W, Spector A, Ho DS. Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 2004;279(31):32804–12.

    Article  PubMed  CAS  Google Scholar 

  61. Cheng WH, Ho YS, Ross DA, Valentine BA, Combs GF, Lei XG. Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J Nutr 1997;127(8):1445–50.

    PubMed  CAS  Google Scholar 

  62. Fu Y, Cheng WH, Porres JM, Ross DA, Lei XG. Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radic Biol Med 1999;27(5–6):605–11.

    Article  PubMed  CAS  Google Scholar 

  63. Fu Y, Cheng WH, Ross DA, Lei X. Cellular glutathione peroxidase protects mice against lethal oxidative stress induced by various doses of diquat. Proc Soc Exp Biol Med 1999;222(2):164–9.

    Article  PubMed  CAS  Google Scholar 

  64. Andziak B, O'Connor TP, Buffenstein R. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev 2005;126(11):1206–12.

    Article  PubMed  CAS  Google Scholar 

  65. Outten CE, Falk RL, Culotta VC. Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J 2005;388:93–101.

    Article  PubMed  CAS  Google Scholar 

  66. Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 1999;274(38):27002–9.

    Article  PubMed  CAS  Google Scholar 

  67. Chae HZ, Kim IH, Kim K, Rhee SG. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 1993;268(22):16815–21.

    PubMed  CAS  Google Scholar 

  68. Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 2005;38(12):1543–52.

    Article  PubMed  CAS  Google Scholar 

  69. Wood ZA, Schroder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 2003;28(1):32–40.

    Article  PubMed  CAS  Google Scholar 

  70. Lee SM, Park JW. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxi-dase. Arch Biochem Biophys 1998;359(1):99–106.

    Article  PubMed  CAS  Google Scholar 

  71. Lee JH, Park JW. Role of thioredoxin peroxidase in aging of stationary cultures of Saccharomyces cerevisiae. Free Radic Res 2004;38(3):225–31.

    Article  PubMed  CAS  Google Scholar 

  72. Wong CM, Siu KL, Jin DY. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J Biol Chem 2004;279(22):23207–13.

    Article  PubMed  CAS  Google Scholar 

  73. Ragu S, Faye G, Iraqui I, Masurel-Heneman A, Kolodner RD, Huang ME. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci U S A 2007;104(23):9747–52.

    Article  PubMed  CAS  Google Scholar 

  74. Smith S, Hwang JY, Banerjee S, Majeed A, Gupta A, Myung K. Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004;101(24):9039–44.

    Article  PubMed  CAS  Google Scholar 

  75. Neumann CA, Krause DS, Carman C V, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 2003;424(6948):561–5.

    Article  PubMed  CAS  Google Scholar 

  76. Lee TH, Kim SU, Yu SL, et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 2003;101(12):5033–8.

    Article  PubMed  CAS  Google Scholar 

  77. Low FM, Hampton MB, Peskin AV, Winterbourn CC. Peroxiredoxin 2 functions as a non-catalytic scavenger of low level hydrogen peroxide in the erythrocyte. Blood 2006.

    Google Scholar 

  78. Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC. The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem 2007;282(16):11885–92.

    Article  PubMed  CAS  Google Scholar 

  79. Stocker R, Glazer AN, Ames BN. Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci U S A 1987;84(16):5918–22.

    Article  PubMed  CAS  Google Scholar 

  80. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science 1987;235(4792):1043–6.

    Article  PubMed  CAS  Google Scholar 

  81. Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A 2002;99(25):16093–8.

    Article  PubMed  CAS  Google Scholar 

  82. Walker DW, Muffat J, Rundel C, Benzer S. Overexpression of a Drosophila homolog of apolipoprotein D leads to increased stress resistance and extended lifespan. Curr Biol 2006;16(7):674–9.

    Article  PubMed  CAS  Google Scholar 

  83. Sanchez D, Lopez-Arias B, Torroja L, et al. Loss of glial lazarillo, a homolog of apolipoprotein D, reduces lifespan and stress resistance in Drosophila. Curr Biol 2006;16(7):680–6.

    Article  PubMed  CAS  Google Scholar 

  84. Rassart E, Bedirian A, Do Carmo S, et al. Apolipoprotein D. Biochim Biophys Acta 2000;1482(1–2):185–98.

    Article  PubMed  CAS  Google Scholar 

  85. Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003;425(6961):980–4.

    Article  PubMed  CAS  Google Scholar 

  86. Findlay VJ, Townsend DM, Morris TE, Fraser JP, He L, Tew KD. A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res 2006;66(13):6800–6.

    Article  PubMed  CAS  Google Scholar 

  87. Sun Y, Hegamyer G, Colburn NH. Molecular cloning of five messenger RNAs differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: one is homologous to human tissue inhibitor of metalloproteinases-3. Cancer Res 1994;54(5):1139–44.

    PubMed  CAS  Google Scholar 

  88. Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 2003;278(10):8135–45.

    Article  PubMed  CAS  Google Scholar 

  89. Wimmer U, Wang Y, Georgiev O, Schaffner W. Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Res 2005;33(18):5715–27.

    Article  PubMed  CAS  Google Scholar 

  90. Welch KD, Reilly TP, Bourdi M, et al. Genomic identification of potential risk factors during acetaminophen-induced liver disease in susceptible and resistant strains of mice. Chem Res Toxicol 2006;19(2):223–33.

    Article  PubMed  CAS  Google Scholar 

  91. Edwards MG, Sarkar D, Klopp R, Morrow JD, Weindruch R, Prolla TA. Age-related impairment of the transcriptional responses to oxidative stress in the mouse heart. Physiol Genomics 2003;13(2):119–27.

    PubMed  CAS  Google Scholar 

  92. Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 2004;304(5670):596–600.

    Article  PubMed  CAS  Google Scholar 

  93. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med 2005;11(12):1306–13.

    Article  PubMed  CAS  Google Scholar 

  94. Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 1973;52(3):741–4.

    Article  PubMed  CAS  Google Scholar 

  95. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004;4(3):181–9.

    Article  PubMed  CAS  Google Scholar 

  96. Knowles PF, Gibson JF, Pick FM, Bray RC. Electron-spin-resonance evidence for enzymic reduction of oxygen to a free radical, the superoxide ion. Biochem J 1969;111(1):53–8.

    PubMed  CAS  Google Scholar 

  97. Kundu TK, Hille R, Velayutham M, Zweier JL. Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys 2007;460(1):113–21.

    Article  PubMed  CAS  Google Scholar 

  98. Sligar SG, Lipscomb JD, Debrunner PG, Gunsalus IC. Superoxide anion production by the autoxidation of cytochrome P450cam. Biochem Biophys Res Commun 1974;61(1):290–6.

    Article  PubMed  CAS  Google Scholar 

  99. Loschen G, Azzi A, Richter C, Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 1974;42(1):68–72.

    Article  PubMed  CAS  Google Scholar 

  100. Boveris A, Cadenas E. Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 1975;54(3):311–4.

    Article  PubMed  CAS  Google Scholar 

  101. Ohlemiller KK, McFadden SL, Ding DL, et al. Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss. Audiol Neurootol 1999;4(5):237–46.

    Article  PubMed  CAS  Google Scholar 

  102. Matzuk MM, Dionne L, Guo Q, Kumar TR, Lebovitz RM. Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology 1998;139(9):4008–11.

    Article  PubMed  CAS  Google Scholar 

  103. Ho YS, Gargano M, Cao J, Bronson RT, Heimler I, Hutz RJ. Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem 1998;273(13):7765–9.

    Article  PubMed  CAS  Google Scholar 

  104. McFadden SL, Ding D, Burkard RF, et al. Cu/Zn SOD deficiency potentiates hearing loss and cochlear pathology in aged 129,CD-1 mice. J Comp Neurol 1999;413(1):101–12.

    Article  PubMed  CAS  Google Scholar 

  105. McFadden SL, Ding D, Reaume AG, Flood DG, Salvi RJ. Age-related cochlear hair cell loss is enhanced in mice lacking copper/zinc superoxide dismutase. Neurobiol Aging 1999;20(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  106. Shefner JM, Reaume AG, Flood DG, et al. Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology 1999;53(6):1239–46.

    PubMed  CAS  Google Scholar 

  107. Yoshida T, Maulik N, Engelman RM, Ho YS, Das DK. Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ Res 2000;86(3):264–9.

    PubMed  CAS  Google Scholar 

  108. Levin ED, Brady TC, Hochrein EC, et al. Molecular manipulations of extracellular superoxide dismutase: functional importance for learning. Behav Genet 1998;28(5):381–90.

    Article  PubMed  CAS  Google Scholar 

  109. Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ. Null mutation of copper/ zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci U S A 1989;86(8):2761–5.

    Article  PubMed  CAS  Google Scholar 

  110. Kirby K, Hu J, Hilliker AJ, Phillips JP. RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress. Proc Natl Acad Sci U S A 2002;99(25):16162–7.

    Article  PubMed  CAS  Google Scholar 

  111. Hilliker AJ, Duyf B, Evans D, Phillips JP. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc Natl Acad Sci U S A 1992;89(10):4343–7.

    Article  PubMed  CAS  Google Scholar 

  112. de Grey AD. The reductive hotspot hypothesis of mammalian aging: membrane metabolism magnifies mutant mitochondrial mischief. Eur J Biochem 2002;269(8):2003–9.

    Article  PubMed  CAS  Google Scholar 

  113. Nicholls DG, Ferguson SJ. Bioenergetics 3. London: Academic Press; 2002.

    Google Scholar 

  114. Jensen PK. Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim Biophys Acta 1966;122(2):157–66.

    PubMed  CAS  Google Scholar 

  115. Loschen G, Flohe L, Chance B. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett 1971;18(2):261–4.

    Article  PubMed  CAS  Google Scholar 

  116. Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 1972;128(3):617–30.

    PubMed  CAS  Google Scholar 

  117. Ishii N, Fujii M, Hartman PS, et al. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 1998;394(6694):694–7.

    Article  PubMed  CAS  Google Scholar 

  118. Guo J, Lemire BD. The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J Biol Chem 2003;278(48):47629–35.

    Article  PubMed  CAS  Google Scholar 

  119. Starkov AA, Fiskum G, Chinopoulos C, et al. Mitochondrial alpha-ketoglutarate dehydroge-nase complex generates reactive oxygen species. J Neurosci 2004;24(36):7779–88.

    Article  PubMed  CAS  Google Scholar 

  120. Tretter L, Adam-Vizi V. alpha-Ketoglutarate dehydrogenase: a target and generator of oxida-tive stress. Philos Trans R Soc Lond B Biol Sci 2005;360(1464):2335–45.

    Article  PubMed  CAS  Google Scholar 

  121. Miwa S, St-Pierre J, Partridge L, Brand MD. Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic Biol Med 2003;35(8):938–48.

    Article  PubMed  CAS  Google Scholar 

  122. Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of super-oxide anion and its release into the intermembrane space. Biochem J 2001;353(Pt 2):411–6.

    Article  PubMed  CAS  Google Scholar 

  123. Muller FL, Liu Y, Van Remmen H. Complex III Releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004;279(47):49064–73.

    Article  PubMed  CAS  Google Scholar 

  124. Hansford RG, Hogue BA, Mildaziene V. Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 1997;29(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  125. Cino M, Del Maestro RF. Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch Biochem Biophys 1989;269(2):623–38.

    Article  PubMed  CAS  Google Scholar 

  126. Hinkle PC, Butow RA, Racker E, Chance B. Partial resolution of the enzymes catalyzing oxidative phosphorylation. X V. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J Biol Chem 1967;242(22):5169–473.

    PubMed  CAS  Google Scholar 

  127. Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS. Characterization of super-oxide-producing sites in isolated brain mitochondria. J Biol Chem 2004;279(6):4127–35.

    Article  PubMed  CAS  Google Scholar 

  128. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973;134(3):707–16.

    PubMed  CAS  Google Scholar 

  129. Staniek K, Nohl H. Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta 2000;1460(2–3):268–75.

    PubMed  CAS  Google Scholar 

  130. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002;277(47):44784–90.

    Article  PubMed  CAS  Google Scholar 

  131. Brand MD. Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 2000;35(6–7):811–20.

    Article  PubMed  CAS  Google Scholar 

  132. Skulachev VP. Role of uncoupled and non—coupled oxidations in maintenance of safely low levels of oxygen and its one—electron reductants. Q Rev Biophys 1996;29(2):169–202.

    Article  PubMed  CAS  Google Scholar 

  133. Kwong LK, Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys 1998;350(1):118–26.

    Article  PubMed  CAS  Google Scholar 

  134. Zhang L, Yu L, Yu CA. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 1998;273(51):33972–6.

    Article  PubMed  CAS  Google Scholar 

  135. Davidson JF, Schiestl RH. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cell Biol 2001;21(24):8483–9.

    Article  PubMed  CAS  Google Scholar 

  136. Davidson JF, Whyte B, Bissinger PH, Schiestl RH. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1996;93(10):5116–21.

    Article  PubMed  CAS  Google Scholar 

  137. Benov L, Fridovich I. Superoxide dismutase protects against aerobic heat shock in Escherichia coli. J Bacteriol 1995;177(11):3344–6.

    PubMed  CAS  Google Scholar 

  138. Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997;416(1):15–8.

    Article  PubMed  CAS  Google Scholar 

  139. Votyakova T V, Reynolds IJ. DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001;79(2):266–77.

    Article  PubMed  CAS  Google Scholar 

  140. Gyulkhandanyan AV, Pennefather PS. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress. J Neurochem 2004;90(2):405–21.

    Article  PubMed  CAS  Google Scholar 

  141. Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2005;2(2):85–93.

    Article  PubMed  CAS  Google Scholar 

  142. Hill KE, Motley AK, Li X, May JM, Burk RF. Combined selenium and vitamin E deficiency causes fatal myopathy in guinea pigs. J Nutr 2001;131(6):1798–802.

    PubMed  CAS  Google Scholar 

  143. Morrow JD, Roberts LJ, 2nd. Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as measure of oxidant stress. Methods Enzymol 1999;300:3–12.

    Article  PubMed  CAS  Google Scholar 

  144. Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ, 2nd. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci U S A 1992;89(22):10721–5.

    Article  PubMed  CAS  Google Scholar 

  145. Montuschi P, Barnes PJ, Roberts LJ 2nd. Isoprostanes: markers and mediators of oxidative stress. FASEB J 2004;18(15):1791–800.

    Article  PubMed  CAS  Google Scholar 

  146. Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol 2004.

    Google Scholar 

  147. Awad JA, Morrow JD, Takahashi K, Roberts LJ, 2nd. Identification of non-cyclooxygenase-derived prostanoid (F2-isoprostane) metabolites in human urine and plasma. J Biol Chem 1993;268(6):4161–9.

    PubMed  CAS  Google Scholar 

  148. Fam SS, Morrow JD. The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Med Chem 2003;10(17):1723–40.

    Article  PubMed  CAS  Google Scholar 

  149. Roberts LJ 2nd, Montine TJ, Markesbery WR, et al. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 1998;273(22):13605–12.

    Article  PubMed  CAS  Google Scholar 

  150. Cadet J, Delatour T, Douki T, et al. Hydroxyl radicals and DNA base damage. Mutat Res 1999;424(1–2):9–21.

    PubMed  CAS  Google Scholar 

  151. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411(6835):366–74.

    Article  PubMed  CAS  Google Scholar 

  152. Collins AR, Cadet J, Moller L, Poulsen HE, Vina J. Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch Biochem Biophys 2004;423(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  153. Cadet J, Douki T, Frelon S, Sauvaigo S, Pouget JP, Ravanat JL. Assessment of oxidative base damage to isolated and cellular DNA by HPLC-MS/MS measurement. Free Radic Biol Med 2002;33(4):441–9.

    Article  PubMed  CAS  Google Scholar 

  154. Beckman KB, Ames BN. Endogenous oxidative damage of mtDNA. Mutat Res 1999;424(1–2):51–8.

    PubMed  CAS  Google Scholar 

  155. Colón W, Wakem LP, Sherman F, Roder H. Identification of the predominant non-native his-tidine ligand in unfolded cytochrome c. Biochem 1997;36(41):12535–41.

    Article  Google Scholar 

  156. Halliwell B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am J Clin Nutr 2000;72(5):1082–7.

    PubMed  CAS  Google Scholar 

  157. Ravanat JL, Douki T, Duez P, et al. Cellular background level of 8-oxo-7,8-dihydro-2′-deoxy-guanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 2002;23(11):1911–8.

    Article  PubMed  CAS  Google Scholar 

  158. Arif JM, Gupta RC. Artifactual formation of 8-oxo-2′-deoxyguanosine: role of fluorescent light and inhibitors. Oncol Rep 2003;10(6):2071–4.

    PubMed  CAS  Google Scholar 

  159. Hamilton ML, Guo Z, Fuller CD, et al. A reliable assessment of 8-oxo-2-deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA. Nucleic Acids Res 2001;29(10):2117–26.

    Article  PubMed  CAS  Google Scholar 

  160. Hofer T, Moller L. Optimization of the workup procedure for the analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine with electrochemical detection. Chem Res Toxicol 2002;15(3):426–32.

    Article  PubMed  CAS  Google Scholar 

  161. Cadet J, D'Ham C, Douki T, Pouget JP, Ravanat JL, Sauvaigo S. Facts and artifacts in the measurement of oxidative base damage to DNA. Free Radic Res 1998;29(6):541–50.

    Article  PubMed  CAS  Google Scholar 

  162. Sauvaigo S, Petec-Calin C, Caillat S, Odin F, Cadet J. Comet assay coupled to repair enzymes for the detection of oxidative damage to DNA induced by low doses of gamma-radiation: use of YOYO-1, low-background slides, and optimized electrophoresis conditions. Anal Biochem 2002;303(1):107–9.

    Article  PubMed  CAS  Google Scholar 

  163. Pouget JP, Ravanat JL, Douki T, Richard MJ, Cadet J. Measurement of DNA base damage in cells exposed to low doses of gamma-radiation: comparison between the HPLC-EC and comet assays. Int J Radiat Biol 1999;75(1):51–8.

    Article  PubMed  CAS  Google Scholar 

  164. Minowa O, Arai T, Hirano M, et al. Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc Natl Acad Sci U S A 2000;97(8):4156–61.

    Article  PubMed  CAS  Google Scholar 

  165. Osterod M, Hollenbach S, Hengstler JG, Barnes DE, Lindahl T, Epe B. Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis 2001;22(9):1459–63.

    Article  PubMed  CAS  Google Scholar 

  166. Stadtman ER, Van Remmen H, Richardson A, Wehr NB, Levine RL. Methionine oxidation and aging. Biochim Biophys Acta 2005;1703(2):135–40.

    PubMed  CAS  Google Scholar 

  167. Stadtman ER. Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 2001;928:22–38.

    Article  PubMed  CAS  Google Scholar 

  168. Requena JR, Levine RL, Stadtman ER. Recent advances in the analysis of oxidized proteins. Amino Acids 2003;25(3–4):221–6.

    Article  PubMed  CAS  Google Scholar 

  169. Schoneich C. Protein modification in aging: an update. Exp Gerontol 2006;41(9):807–12.

    Article  PubMed  CAS  Google Scholar 

  170. Berlett BS, Friguet B, Yim MB, Chock PB, Stadtman ER. Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: relevance to signal transduction. Proc Natl Acad Sci U S A 1996;93(5):1776–80.

    Article  PubMed  CAS  Google Scholar 

  171. Quint P, Reutzel R, Mikulski R, McKenna R, Silverman DN. Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation. Free Radic Biol Med 2006;40(3):453–8.

    Article  PubMed  CAS  Google Scholar 

  172. Cruthirds DL, Novak L, Akhi KM, Sanders PW, Thompson JA, MacMillan-Crow LA. Mitochondrial targets of oxidative stress during renal ischemia/reperfusion. Arch Biochem Biophys 2003;412(1):27–33.

    Article  PubMed  CAS  Google Scholar 

  173. Levine RL, Berlett BS, Moskovitz J, Mosoni L, Stadtman ER. Methionine residues may protect proteins from critical oxidative damage. Mech Ageing Dev 1999;107(3):323–32.

    Article  PubMed  CAS  Google Scholar 

  174. Rhee SG, Jeong W, Chang TS, Woo HA. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int Suppl 2007(106):S3–8.

    Article  CAS  Google Scholar 

  175. Woo HA, Jeong W, Chang TS, et al. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 2005;280(5):3125–8.

    Article  PubMed  CAS  Google Scholar 

  176. Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 2004;279(49):50994–1001.

    Article  PubMed  CAS  Google Scholar 

  177. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab Rev 1998;30(2):225–43.

    Article  PubMed  CAS  Google Scholar 

  178. Chaudhuri AR, de Waal EM, Pierce A, Van Remmen H, Ward WF, Richardson A. Detection of protein carbonyls in aging liver tissue: a fluorescence-based proteomic approach. Mech Ageing Dev 2006;127(11):849–61.

    Article  PubMed  CAS  Google Scholar 

  179. Yan LJ, Sohal RS. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci U S A 1998;95(22):12896–901.

    Article  PubMed  CAS  Google Scholar 

  180. Yan LJ, Levine RL, Sohal RS. Oxidative damage during aging targets mitochondrial aconi-tase. Proc Natl Acad Sci U S A 1997;94(21):11168–72.

    Article  PubMed  CAS  Google Scholar 

  181. Cabiscol E, Levine RL. Carbonic anhydrase III. Oxidative modification in vivo and loss of phosphatase activity during aging. J Biol Chem 1995;270(24):14742–7.

    Article  PubMed  CAS  Google Scholar 

  182. Levine RL. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue. J Biol Chem 1983;258(19):11823–7.

    PubMed  CAS  Google Scholar 

  183. Levine RL, Oliver CN, Fulks RM, Stadtman ER. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc Natl Acad Sci U S A 1981;78(4):2120–4.

    Article  PubMed  CAS  Google Scholar 

  184. Requena JR, Chao CC, Levine RL, Stadtman ER. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci U S A 2001;98(1):69–74.

    Article  PubMed  CAS  Google Scholar 

  185. Pamplona R, Portero-Otin M, Requena J, Gredilla R, Barja G. Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after 4 months of caloric restriction than in age-matched controls. Mech Ageing Dev 2002;123(11):1437–46.

    Article  PubMed  CAS  Google Scholar 

  186. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 1996;271(17):9982–6.

    Article  PubMed  CAS  Google Scholar 

  187. Ahmed MU, Brinkmann Frye E, Degenhardt TP, Thorpe SR, Baynes JW. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J 1997;324 (Pt 2):565–70.

    PubMed  CAS  Google Scholar 

  188. Stark G. Functional consequences of oxidative membrane damage. J Membr Biol 2005;205(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  189. Yokota T, Igarashi K, Uchihara T, et al. Delayed-onset ataxia in mice lacking alpha-tocopherol transfer protein: model for neuronal degeneration caused by chronic oxidative stress. Proc Natl Acad Sci U S A 2001;98(26):15185–90.

    Article  PubMed  CAS  Google Scholar 

  190. Katz ML, Stone WL, Dratz EA. Fluorescent pigment accumulation in retinal pigment epithelium of antioxidant-deficient rats. Invest Ophthalmol Vis Sci 1978;17(11):1049–58.

    PubMed  CAS  Google Scholar 

  191. Yant LJ, Ran Q, Rao L, et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 2003;34(4):496–502.

    Article  PubMed  CAS  Google Scholar 

  192. Liu XF, Elashvili I, Gralla EB, Valentine JS, Lapinskas P, Culotta VC. Yeast lacking super-oxide dismutase. Isolation of genetic suppressors. J Biol Chem 1992;267(26):18298–302.

    PubMed  CAS  Google Scholar 

  193. Huang ME, Rio AG, Nicolas A, Kolodner RD. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc Natl Acad Sci U S A 2003;100(20):11529–34.

    Article  PubMed  CAS  Google Scholar 

  194. Huang ME, Kolodner RD. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol Cell 2005;17(5):709–20.

    Article  PubMed  CAS  Google Scholar 

  195. Benov L, Fridovich I. The rate of adaptive mutagenesis in Escherichia coli is enhanced by oxygen (superoxide). Mutat Res 1996;357(1–2):231–6.

    PubMed  Google Scholar 

  196. Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 2006;124(5):1069–81.

    Article  PubMed  CAS  Google Scholar 

  197. Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 1991;266(29):19328–33.

    PubMed  CAS  Google Scholar 

  198. Chang EC, Kosman DJ. O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae. J Bacteriol 1990;172(4):1840–5.

    PubMed  CAS  Google Scholar 

  199. Jensen LT, Sanchez RJ, Srinivasan C, Valentine JS, Culotta VC. Mutations in Saccharomyces cerevisiae iron-sulfur cluster assembly genes and oxidative stress relevant to Cu,Zn superox-ide dismutase. J Biol Chem 2004;279(29):29938–43.

    Article  PubMed  CAS  Google Scholar 

  200. Wallace MA, Liou LL, Martins J, et al. Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis: cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 2004;279(31):32055–62.

    Article  PubMed  CAS  Google Scholar 

  201. Cleveland DW, Liu J. Oxidation versus aggregation—how do SOD1 mutants cause ALS? Nat Med 2000;6(12):1320–1.

    Article  PubMed  CAS  Google Scholar 

  202. Terman A, Brunk UT. Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 2006;8(1–2):197–204.

    Article  PubMed  CAS  Google Scholar 

  203. Terman A, Brunk UT. Lipofuscin: mechanisms of formation and increase with age. APMIS 1998;106(2):265–76.

    Article  PubMed  CAS  Google Scholar 

  204. Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 2006;7(3):207–19.

    Article  PubMed  CAS  Google Scholar 

  205. Squier TC. Oxidative stress and protein aggregation during biological aging. Exp Gerontol 2001;36(9):1539–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Miwa, S., Muller, F.L., Beckman, K.B. (2008). The Basics of Oxidative Biochemistry. In: Miwa, S., Beckman, K.B., Muller, F.L. (eds) Oxidative Stress in Aging. Aging Medicine. Humana Press. https://doi.org/10.1007/978-1-59745-420-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-420-9_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-991-8

  • Online ISBN: 978-1-59745-420-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics