Skip to main content

Localization and Function of Gamma Aminobutyric Acid Transporter 1 in the Retina

  • Chapter
Ocular Transporters In Ophthalmic Diseases And Drug Delivery

Part of the book series: Ophthalmology Research ((OPHRES))

Summary

Plasma membrane transporters, located in the presynaptic terminal and/or surrounding glial cells, terminate synaptic transmission by facilitating rapid, high-affinity uptake of the neurotransmitter from the synaptic cleft. Pharmacological blockade of transporters increases extracellular neurotransmitter levels and prolongs transmitter exposure to the receptors. Gamma aminobutyric acid (GABA) transporters (GATs) belong to the Na+- and Cl--dependent transporter family. Four GATs have been isolated and cloned in mammals, of which GAT-1 and GAT-3 are expressed in the retina. The GAT- 1 transporter has a widespread distribution to different retinal cell types, but it is prominently expressed in the amacrine cells of all vertebrate species studied to date. There are some species differences in the expression patterns of GAT-1 in the retina. It is expressed by horizontal cells in non-mammalian, but not in mammalian, retinas, and it is expressed in Müller glial cells of rats and guinea pigs, but not in those of rabbits and primates.

Functionally, GAT-1, together with GAT-3, regulates the extracellular GABA levels in the retina, thereby determining the level of inhibitory interactions and affecting visual processing in the retinal pathways. GAT-1 may interact with GABAC receptors on bipolar cell terminals and influence ganglion cell responses. It may also interact with GABAB receptors in the regulation of retinal waves of spontaneous activity, which are known to play critical roles during development of the visual system. Other important functional actions are exerted by GAT-1 through reversed GABA transport. These include GABA release by cholinergic/GABAergic starburst amacrine cells and GABA release during early retinal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Kanner BI, Schuldiner S. Mechanism of transport and storage of neurotransmitters. CRC Crit Rev Biochem 1987;22:1–38.

    PubMed  CAS  Google Scholar 

  2. 2. Chen NH, Reith ME, Quick MW. Synaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 2004;447:519–31.

    PubMed  CAS  Google Scholar 

  3. 3. Gether U, Andersen PH, Larsson OM, Schousboe A. Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol Sci 2006;27:375–83.

    PubMed  CAS  Google Scholar 

  4. 4. Deken SL, Beckman ML, Boos L, Quick MW. Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat Neurosci 2000;3:998–1003.

    PubMed  CAS  Google Scholar 

  5. 5. Attwell D, Barbour B, Szatkowski M. Nonvesicular release of neurotransmitter. Neuron 1993;11:401–7.

    PubMed  CAS  Google Scholar 

  6. 6. Bonanno G, Raiteri L, Paluzzi S, Zappettini S, Usai C, Raiteri M. Co-existence of GABA and Glu transporters in the central nervous system. Curr Top Med Chem 2006;6:979–88.

    PubMed  CAS  Google Scholar 

  7. 7. Jursky F, Tamura S, Tamura A, Mandiyan S, Nelson H, Nelson N. Structure, function and brain localization of neurotransmitter transporters. J Exp Biol 1994;196:283–95.

    PubMed  CAS  Google Scholar 

  8. 8. Worrall DM, Williams DC. Sodium ion-dependent transporters for neurotransmitters: a review of recent developments. Biochem J 1994;297(3):425–36.

    PubMed  CAS  Google Scholar 

  9. 9. Cammack JN, Rakhilin SV, Schwartz EA. A GABA transporter operates asymmetrically and with variable stoichiometry. Neuron 1994;13:949–60.

    PubMed  CAS  Google Scholar 

  10. 10. Quick MW. Substrates regulate gamma-aminobutyric acid transporters in a syntaxin 1A-dependent manner. Proc Natl Acad Sci USA 2002;99:5686–91.

    PubMed  CAS  Google Scholar 

  11. 11. Law RM, Stafford A, Quick MW. Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation. J Biol Chem 2000;275:23986–91.

    PubMed  CAS  Google Scholar 

  12. 12. Herbison AE, Augood SJ, Simonian SX, Chapman C. Regulation of GABA transporter activity and mRNA expression by estrogen in rat preoptic area. J Neurosci 1995;15:8302–9.

    PubMed  CAS  Google Scholar 

  13. 13. Beckman ML, Bernstein EM, Quick MW. Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. J Neurosci 1999;19:RC9.

    PubMed  CAS  Google Scholar 

  14. 14. Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 1996;29:335–56.

    PubMed  CAS  Google Scholar 

  15. 15. Sarup A, Larsson OM, Schousboe A. GABA transporters and GABA-transaminase as drug targets. Curr Drug Targets CNS Neurol Disord 2003;2:269–77.

    PubMed  CAS  Google Scholar 

  16. 16. Cherubini E, Conti F. Generating diversity at GABAergic synapses. Trends Neurosci 2001;24:155–62.

    PubMed  CAS  Google Scholar 

  17. 17. Dalby NO. Inhibition of gamma-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol 2003;479:127–37.

    PubMed  CAS  Google Scholar 

  18. 18. Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N. Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem 1993;268:2106–12.

    PubMed  CAS  Google Scholar 

  19. 19. Borden LA, Murali Dhar TG, Smith KE, Weinshank RL, Branchek TA, Gluchowski C. Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. Eur J Pharmacol 1994;269:219–24.

    PubMed  CAS  Google Scholar 

  20. 20. Yang XL. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol 2004;73:127–50.

    PubMed  CAS  Google Scholar 

  21. 21. McMahon MJ, Packer OS, Dacey DM. The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway. J Neurosci 2004;24:3736–45.

    PubMed  CAS  Google Scholar 

  22. 22. Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R. Hemichannel-mediated inhibition in the outer retina. Science 2001;292:1178–80.

    PubMed  CAS  Google Scholar 

  23. 23. Verweij J, Hornstein EP, Schnapf JL. Surround antagonism in macaque cone photoreceptors. J Neurosci 2003;23:10249–57.

    PubMed  CAS  Google Scholar 

  24. 24. Cook PB, McReynolds JS. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci 1998;1:714–9.

    PubMed  CAS  Google Scholar 

  25. 25. Flores-Herr N, Protti DA, Wassle H. Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. J Neurosci 2001;21:4852–63.

    PubMed  CAS  Google Scholar 

  26. 26. Dong CJ, Werblin FS. Temporal contrast enhancement via GABAC feedback at bipolar terminals in the tiger salamander retina. J Neurophysiol 1998;79:2171–80.

    PubMed  CAS  Google Scholar 

  27. 27. Caldwell JH, Daw NW, Wyatt HJ. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol 1978;276:277–98.

    PubMed  CAS  Google Scholar 

  28. 28. Lukasiewicz PD, Eggers ED, Sagdullaev BT, McCall MA. GABAC receptor-mediated inhibition in the retina. Vision Res 2004;44:3289–96.

    PubMed  CAS  Google Scholar 

  29. 29. Marc RE. Retinal neurotransmitters. In: Chalupa LM, Werner JS, eds. The visual neurosciences. Cambridge (MA): MIT Press; 2003. p. 304–19.

    Google Scholar 

  30. 30. Slaughter MM. Inhibition in the retina. In: Chalupa LM, Werner JS, eds. The visual neurosciences. Cambridge (MA): MIT Press; 2003. p. 355–68.

    Google Scholar 

  31. 31. Casini G, Rickman DW, Brecha NC. Expression of the gamma-aminobutyric acid (GABA) plasma membrane transporter-1 in monkey and human retina. Invest Ophthalmol Vis Sci 2006;47:1682–90.

    PubMed  Google Scholar 

  32. 32. Strettoi E, Masland RH. The number of unidentified amacrine cells in the mammalian retina. Proc Natl Acad Sci USA 1996;93:14906–11.

    PubMed  CAS  Google Scholar 

  33. 33. Casini G, Brecha NC. Colocalization of vasoactive intestinal polypeptide and GABA immunoreactivities in a population of wide-field amacrine cells in the rabbit retina. Vis Neurosci 1992;8:373–8.

    PubMed  CAS  Google Scholar 

  34. 34. Marc RE. Structural organization of GABAergic circuitry in ectotherm retinas. Prog Brain Res 1992;90:61–92.

    PubMed  CAS  Google Scholar 

  35. 35. Marc RE, Jones BW. Molecular phenotyping of retinal ganglion cells. J Neurosci 2002;22: 413–27.

    PubMed  CAS  Google Scholar 

  36. 36. Yazulla S. GABAergic mechanisms in the retina. In: Osborne NN, Chader GJ, eds. Progress in Retinal Research. Oxford: Pergamon; 1986:1–52.

    Google Scholar 

  37. 37. Biedermann B, Eberhardt W, Reichelt W. GABA uptake into isolated retinal Muller glial cells of the guinea-pig detected electrophysiologically. Neuroreport 1994;5(4):438–40.

    PubMed  CAS  Google Scholar 

  38. 38. Yu BC, Watt CB, Lam DM, Fry KR. GABAergic ganglion cells in the rabbit retina. Brain Res 1988;439:376–82.

    PubMed  CAS  Google Scholar 

  39. 39. Yazulla S, Brecha N. Binding and uptake of the GABA analogue, 3H-muscimol, in the retinas of goldfish and chicken. Invest Ophthalmol Vis Sci 1980;19:1415–26.

    PubMed  CAS  Google Scholar 

  40. 40. Pourcho RG, Goebel DJ. Neuronal subpopulations in cat retina which accumulate the GABA agonist, (3H)muscimol: a combined Golgi and autoradiographic study. J Comp Neurol 1983;219:25–35.

    PubMed  CAS  Google Scholar 

  41. 41. Massey SC, Blankenship K, Mills SL. Cholinergic amacrine cells in the rabbit retina accumulate muscimol. Vis Neurosci 1991;6:113–7.

    PubMed  CAS  Google Scholar 

  42. 42. Hendrickson A, Ryan M, Noble B, Wu JY. Colocalization of [3H]muscimol and antisera to GABA and glutamic acid decarboxylase within the same neurons in monkey retina. Brain Res 1985;348:391–6.

    PubMed  CAS  Google Scholar 

  43. 43. Chun MH, Wassle H, Brecha N. Colocalization of [3H]muscimol uptake and choline acetyltransferase immunoreactivity in amacrine cells of the cat retina. Neurosci Lett 1988;94:259–63.

    PubMed  CAS  Google Scholar 

  44. 44. Pow DV, Baldridge W, Crook DK. Activity-dependent transport of GABA analogues into specific cell types demonstrated at high resolution using a novel immunocytochemical strategy. Neuroscience 1996;73:1129–43.

    PubMed  CAS  Google Scholar 

  45. 45. Brandon C, Lam DM, Wu JY. The gamma-aminobutyric acid system in rabbit retina: localization by immunocytochemistry and autoradiography. Proc Natl Acad Sci USA 1979;76:3557–61.

    PubMed  CAS  Google Scholar 

  46. 46. Agardh E, Ehinger B. Retinal GABA neuron labelling with [3H]isoguvacine in different species. Exp Eye Res 1983;36:215–29.

    PubMed  CAS  Google Scholar 

  47. 47. Pourcho RG. Uptake of [3H]glycine and [3H]GABA by amacrine cells in the cat retina. Brain Res 1980;198:33–46.

    PubMed  CAS  Google Scholar 

  48. 48. Freed MA, Nakamura Y, Sterling P. Four types of amacrine in the cat retina that accumulate GABA. J Comp Neurol 1983;219:295–304.

    PubMed  CAS  Google Scholar 

  49. 49. Borden LA, Smith KE, Hartig PR, Branchek TA, Weinshank RL. Molecular heterogeneity of the gamma-aminobutyric acid (GABA) transport system. Cloning of two novel high affinity GABA transporters from rat brain. J Biol Chem 1992;267:21098–104.

    PubMed  CAS  Google Scholar 

  50. 50. Brecha NC, Weigmann C. Expression of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter in the rat retina. J Comp Neurol 1994;345:602–11.

    PubMed  CAS  Google Scholar 

  51. 51. Howd AG, Rattray M, Butt AM. Expression of GABA transporter mRNAs in the developing and adult rat optic nerve. Neurosci Lett 1997;235:98–100.

    PubMed  CAS  Google Scholar 

  52. 52. Honda S, Yamamoto M, Saito N. Immunocytochemical localization of three subtypes of GABA transporter in rat retina. Brain Res Mol Brain Res 1995;33:319–25.

    PubMed  CAS  Google Scholar 

  53. 53. Johnson J, Chen TK, Rickman DW, Evans C, Brecha NC. Multiple gamma-Aminobutyric acid plasma membrane transporters (GAT-1, GAT-2, GAT-3) in the rat retina. J Comp Neurol 1996;375:212–24.

    PubMed  CAS  Google Scholar 

  54. 54. Biedermann B, Bringmann A, Reichenbach A. High-affinity GABA uptake in retinal glial (Muller) cells of the guinea pig: electrophysiological characterization, immunohistochemical localization, and modeling of efficiency. Glia 2002;39:217–28.

    PubMed  Google Scholar 

  55. 55. Sivakami S, Ganapathy V, Leibach FH, Miyamoto Y. The gamma-aminobutyric acid transporter and its interaction with taurine in the apical membrane of the bovine retinal pigment epithelium. Biochem J 1992;283(2):391–7.

    PubMed  CAS  Google Scholar 

  56. 56. Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL. Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Brain Res Mol Brain Res 1995;33:7–21.

    PubMed  CAS  Google Scholar 

  57. 57. Hu M, Bruun A, Ehinger B. Expression of GABA transporter subtypes (GAT1, GAT3) in the adult rabbit retina. Acta Ophthalmol Scand 1999;77:255–60.

    PubMed  CAS  Google Scholar 

  58. 58. Guastella J, Nelson N, Nelson H, et al. Cloning and expression of a rat brain GABA transporter. Science 1990;249:1303–6.

    PubMed  CAS  Google Scholar 

  59. 59. Qian X, Malchow RP, O'Brien J, al-Ubaidi MR. Isolation and characterization of a skate retinal GABA transporter cDNA. Mol Vis 1998;4:6.

    PubMed  CAS  Google Scholar 

  60. 60. Do Nascimento JL, Ventura AL, Paes de Carvalho R. Veratridine- and glutamate-induced release of [3H]-GABA from cultured chick retina cells: possible involvement of a GAT-1-like subtype of GABA transporter. Brain Res 1998;798:217–22.

    PubMed  Google Scholar 

  61. 61. Wassle H, Boycott BB. Functional architecture of the mammalian retina. Physiol Rev 1991;71(2):447–80.

    PubMed  CAS  Google Scholar 

  62. 62. Yang CY, Brecha NC, Tsao E. Immunocytochemical localization of gamma-aminobutyric acid plasma membrane transporters in the tiger salamander retina. J Comp Neurol 1997;389: 117–26.

    PubMed  CAS  Google Scholar 

  63. 63. Ekstrom P, Anzelius M. GABA and GABA-transporter (GAT-1) immunoreactivities in the retina of the salmon (Salmo salar L.). Brain Res 1998;812:179–85.

    PubMed  CAS  Google Scholar 

  64. 64. Fletcher EL, Clark MJ, Furness JB. Neuronal and glial localization of GABA transporter immunoreactivity in the myenteric plexus. Cell Tissue Res 2002;308:339–46.

    PubMed  CAS  Google Scholar 

  65. 65. Ruiz M, Egal H, Sarthy V, Qian X, Sarkar HK. Cloning, expression, and localization of a mouse retinal gamma-aminobutyric acid transporter. Invest Ophthalmol Vis Sci 1994;35:4039–48.

    PubMed  CAS  Google Scholar 

  66. 66. Sinclair JR, Nirenberg S. Characterization of neuropeptide Y-expressing cells in the mouse retina using immunohistochemical and transgenic techniques. J Comp Neurol 2001;432:296–306.

    PubMed  CAS  Google Scholar 

  67. 67. Dmitrieva NA, Lindstrom JM, Keyser KT. The relationship between GABA-containing cells and the cholinergic circuitry in the rabbit retina. Vis Neurosci 2001;18:93–100.

    PubMed  CAS  Google Scholar 

  68. 68. Jones EM. Na(+)- and Cl(-)-dependent neurotransmitter transporters in bovine retina: identification and localization by in situ hybridization histochemistry. Vis Neurosci 1995;12(6):1135–42.

    PubMed  CAS  Google Scholar 

  69. 69. Wilson JR, Cowey A, Somogy P. GABA immunopositive axons in the optic nerve and optic tract of macaque monkeys. Vision Res 1996;36(10):1357–63.

    PubMed  CAS  Google Scholar 

  70. 70. Koontz MA, Hendrickson LE, Brace ST, Hendrickson AE. Immunocytochemical localization of GABA and glycine in amacrine and displaced amacrine cells of macaque monkey retina. Vision Res 1993;33(18):2617–28.

    PubMed  CAS  Google Scholar 

  71. 71. Da Costa BL, Hokoc JN, Pinaud RR, Gattass R. GABAergic retinocollicular projection in the New World monkey Cebus apella. Neuroreport 1997;8(8):1797–802.

    PubMed  Google Scholar 

  72. 72. Crooks J, Kolb H. Localization of GABA, glycine, glutamate and tyrosine hydroxylase in the human retina. J Comp Neurol 1992;315(3):287–302.

    PubMed  CAS  Google Scholar 

  73. 73. Minelli A, Brecha NC, Karschin C, DeBiasi S, Conti F. GAT-1, a high-affinity GABA plasma membrane transporter, is localized to neurons and astroglia in the cerebral cortex. J Neurosci 1995;15:7734–46.

    PubMed  CAS  Google Scholar 

  74. 74. Ribak CE, Tong WM, Brecha NC. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 1996;367:595–606.

    PubMed  CAS  Google Scholar 

  75. 75. Hu M, Bruun A, Ehinger B. Expression of GABA transporter subtypes (GAT1, GAT3) in the developing rabbit retina. Acta Ophthalmol Scand 1999;77:261–5.

    PubMed  CAS  Google Scholar 

  76. 76. Calaza Kda C, de Mello MC, de Mello FG, Gardino PF. Local differences in GABA release induced by excitatory amino acids during retina development: selective activation of NMDA receptors by aspartate in the inner retina. Neurochem Res 2003;28:1475–85.

    PubMed  Google Scholar 

  77. 77. Klooster J, Nunes Cardozo B, Yazulla S, Kamermans M. Postsynaptic localization of gamma-aminobutyric acid transporters and receptors in the outer plexiform layer of the goldfish retina: An ultrastructural study. J Comp Neurol 2004;474:58–74.

    PubMed  CAS  Google Scholar 

  78. 78. Birnbaum AD, Rohde SK, Qian H, Al-Ubaidi MR, Caldwell JH, Malchow RP. Cloning, immunolocalization, and functional expression of a GABA transporter from the retina of the skate. Vis Neurosci 2005;22:211–23.

    PubMed  Google Scholar 

  79. 79. Zhao JW, Du JL, Li JS, Yang XL. Expression of GABA transporters on bullfrog retinal Muller cells. Glia 2000;31:104–17.

    PubMed  CAS  Google Scholar 

  80. 80. Itouji A, Sakai N, Tanaka C, Saito N. Neuronal and glial localization of two GABA transporters (GAT1 and GAT3) in the rat cerebellum. Brain Res Mol Brain Res 1996;37(1–2):309–16.

    PubMed  CAS  Google Scholar 

  81. 81. Palacin M, Estevez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998;78:969–1054.

    PubMed  CAS  Google Scholar 

  82. 82. Crook DK, Pow DV. Analysis of the distribution of glycine and GABA in amacrine cells of the developing rabbit retina: a comparison with the ontogeny of a functional GABA transport system in retinal neurons. Vis Neurosci 1997;14:751–63.

    PubMed  CAS  Google Scholar 

  83. 83. Yang CY. gamma-aminobutyric acid transporter-mediated current from bipolar cells in tiger salamander retinal slices. Vision Res 1998;38:2521–6.

    PubMed  CAS  Google Scholar 

  84. 84. Kamermans M, Werblin F. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J Neurosci 1992;12:2451–63.

    PubMed  CAS  Google Scholar 

  85. 85. Malchow RP, Andersen KA. GABA transporter function in the horizontal cells of the skate. Prog Brain Res 2001;131:267–75.

    PubMed  CAS  Google Scholar 

  86. 86. Schwartz EA. Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science 1987;238:350–55.

    PubMed  CAS  Google Scholar 

  87. 87. Takahashi K, Miyoshi S, Kaneko A, Copenhagen DR. Actions of nipecotic acid and SKF89976A on GABA transporter in cone-driven horizontal cells dissociated from the catfish retina. Jpn J Physiol 1995;45:457–73.

    PubMed  CAS  Google Scholar 

  88. 88. Yang XL, Gao F, Wu SM. Modulation of horizontal cell function by GABA(A) and GABA(C) receptors in dark- and light-adapted tiger salamander retina. Vis Neurosci 1999;16:967–79.

    PubMed  CAS  Google Scholar 

  89. 89. Verweij J, Kamermans M, Negishi K, Spekreijse H. GABA sensitivity of spectrally classified horizontal cells in goldfish retina. Vis Neurosci 1998;15:77–86.

    PubMed  CAS  Google Scholar 

  90. 90. Haugh-Scheidt L, Malchow RP, Ripps H. GABA transport and calcium dynamics in horizontal cells from the skate retina. J Physiol 1995;488(3):565–76.

    PubMed  CAS  Google Scholar 

  91. 91. Cammack JN, Schwartz EA. Ions required for the electrogenic transport of GABA by horizontal cells of the catfish retina. J Physiol 1993;472:81–102.

    PubMed  CAS  Google Scholar 

  92. 92. Dong CJ, Picaud SA, Werblin FS. GABA transporters and GABAC-like receptors on catfish cone- but not rod-driven horizontal cells. J Neurosci 1994;14:2648–58.

    PubMed  CAS  Google Scholar 

  93. 93. Nguyen-Legros J, Versaux-Botteri C, Savy C. Dopaminergic and GABAergic retinal cell populations in mammals. Microsc Res Tech 1997;36(1):26–42.

    PubMed  CAS  Google Scholar 

  94. 94. Isaacson JS, Solis JM, Nicoll RA. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 1993;10:165–75.

    PubMed  CAS  Google Scholar 

  95. 95. O'Malley DM, Sandell JH, Masland RH. Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci 1992;12:1394–408.

    PubMed  Google Scholar 

  96. 96. Hull C, Li GL, von Gersdorff H. GABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal. J Neurosci 2006;26:6979–84.

    PubMed  CAS  Google Scholar 

  97. 97. Ichinose T, Lukasiewicz PD. GABA transporters regulate inhibition in the retina by limiting GABA(C) receptor activation. J Neurosci 2002;22:3285–92.

    PubMed  CAS  Google Scholar 

  98. 98. Hanitzsch R, Kuppers L, Flade A. The effect of GABA and the GABA-uptake-blocker NO-711 on the b-wave of the ERG and the responses of horizontal cells to light. Graefes Arch Clin Exp Ophthalmol 2004;242:784–91.

    PubMed  CAS  Google Scholar 

  99. 99. Sandell JH. GABA as a developmental signal in the inner retina and optic nerve. Perspect Dev Neurobiol 1998;5:269–78.

    PubMed  CAS  Google Scholar 

  100. 100. Firth SI, Wang CT, Feller MB. Retinal waves: mechanisms and function in visual system development. Cell Calcium 2005;37(5):425–32.

    PubMed  CAS  Google Scholar 

  101. 101. Catsicas M, Mobbs P. GABAb receptors regulate chick retinal calcium waves. J Neurosci 2001;21:897–910.

    PubMed  CAS  Google Scholar 

  102. 102. Sills GJ. Pre-clinical studies with the GABAergic compounds vigabatrin and tiagabine. Epileptic Disord 2003;5:51–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Casini, G. (2008). Localization and Function of Gamma Aminobutyric Acid Transporter 1 in the Retina. In: Tombran-Tink, J., Barnstable, C.J. (eds) Ocular Transporters In Ophthalmic Diseases And Drug Delivery. Ophthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-375-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-375-2_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-958-1

  • Online ISBN: 978-1-59745-375-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics