Skip to main content

Glycation

Receptor for Advanced Glycation Endproducts and Diabetic Nephropathy

  • Chapter
  • 1336 Accesses

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

The products of nonenzymatic glycation and oxidation of proteins and lipids are enriched in diabetic tissues. Driven by hyperglycemia and oxidative stress, the production and accumulation of these species result in multiple perturbations in the diabetic kidney. One of these, a “gain-of-function” outcome results from the interaction of advanced glycation endproducts (AGEs) with their signal transduction receptor, RAGE (receptor for AGE). Multiple epidemiological studies support the contention that AGEs are increased in diabetic nephropathy (DN) and may be a biomarker of disease activity. Studies in animal models support the premise that blockade of AGE or RAGE pathways results in significant suppression of diabetes-associated nephropathic changes, including decreases in albuminuria, expansion of the mesangial matrix, and production of prosclerotic cytokines and growth factors. First, studies in human clinical trials targeting the AGE axis provide support for the contribution of AGEs to the pathogenesis of DN. Trials to assess the role of RAGE antagonism are on the horizon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brownlee M, Cerami A, Vlassara H. Advanced glycoslyation endproducts in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988;318:1315–1321.

    Article  PubMed  CAS  Google Scholar 

  2. Brownlee M. Advanced glycosylation in diabetes and aging. Ann Rev Med 1995;46:223–234.

    Article  PubMed  CAS  Google Scholar 

  3. Dyer D, Blackledge S, Thorpe SR, Baynes JW. Formation of pentosidine during nonenzymatic browning of protein by glucose: identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem 1991;266:11,654–11,660.

    PubMed  CAS  Google Scholar 

  4. Grandhee S, Monnier VM. Mechanisms of formation of the Maillard protein crosslink pentosidine: ribose, glucose, fructose and ascorbate as pentosidine precursors. J Biol Chem 1991;266:11,649–11,653.

    PubMed  CAS  Google Scholar 

  5. Beisswenger P, Moore L, Brinck-Johnsen T, Curphey TJ. Increased collagen-linked pentosidine levels and AGEs in early diabetic nephropathy. J Clin Invest 1993;92:212–217.

    PubMed  CAS  Google Scholar 

  6. Ikeda K, Higashi T, Sano H, et al. Carboxymethyllysine protein adduct is a major immunological epitope in proteins modified with AGEs of the Maillard reaction. Biochem 1996;35:8075–8083.

    Article  CAS  Google Scholar 

  7. Reddy S, Bichler J, Wells-Knecht K, Thorpe SR, Baynes JW. Carboxymethyllysine is a dominant AGE antigen in tissue proteins. Biochem 1995;34:10,872–10,878.

    Article  CAS  Google Scholar 

  8. Anderson MM, Requena JR, Crowley JR, Thorpe SR, Heinecke JW. The myeloperoxidase system of human phagocytes generates Nepsilon-(carboxymethyl)lysine on proteins: a mechanism for producing advanced glycation endproducts at sites of inflammation. J Clin Invest 1999;104:103–113.

    PubMed  CAS  Google Scholar 

  9. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. J Clin Invest 1997;99:457–468.

    PubMed  CAS  Google Scholar 

  10. Horie K, Miyata T, Maeda K, et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J Clin Invest 1997;100:2995–3004.

    PubMed  CAS  Google Scholar 

  11. Sebekova K, Podracka L, Heidland A, Schinzel R. Enhanced plasma levels of advanced glycation end products (AGE) and pro-inflammatory cytokines in children/adolescents with chronic renal insufficiency and after renal replacement therapy by dialysis and transplantation—are they inter-related? Clin Nephrol 2001;56:S21–S26.

    PubMed  CAS  Google Scholar 

  12. Shimoike T, Inoguchi T, Umeda F, Nawata H, Kawano K, Ochi H. The meaning of serum levels of advanced glycosylation end products in diabetic nephropathy. Metab 2000;49:1030–1035.

    Article  CAS  Google Scholar 

  13. Aso Y, Inukai T, Tayama K, Takemura Y. Serum concentrations of advanced glycation endproducts are associated with the development of atherosclerosis as well as diabetic microangiopathy in patients with type 2 diabetes. Acta Diabetol 2000;37:87–92.

    Article  PubMed  CAS  Google Scholar 

  14. Miura J, Yamagishi S, Uchigata Y, et al. Serum levels of non-carboxymethyllysine advanced glycation endproducts are correlated to severity of microvascular complications in patients with type 1 diabetes. J Diabet Complications 2003;17:16–21.

    Article  Google Scholar 

  15. Wagner Z, Wittmann I, Mazak I, et al. N(epsilon)-(carboxymethyl)lysine levels in patients with type 2 diabetes: role of renal function. Am J Kidney Dis 2001;38:785–791.

    PubMed  CAS  Google Scholar 

  16. Kanauchi M, Nishioka H, Dohi K. Serum levels of advanced glycosylation end products in diabetic nephropathy. Nephron 2001;89:228–230.

    Article  PubMed  CAS  Google Scholar 

  17. Kislinger T, Fu C, Huber B, et al. Ne (carboxymethyl)lysine modifications of proteins are ligands for RAGE that activate cell signaling pathways and modulate gene expression. J Biol Chem 1999;274:31,740–31,749.

    Article  PubMed  CAS  Google Scholar 

  18. El Khoury J, Thomas CA, Loike JD, Hickman SE, Cao L, Silverstein SC. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J Biol Chem 1994;269:10,197–10,200.

    PubMed  Google Scholar 

  19. Vlassara H, Li YM, Imani F, et al. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med 1995;1:634–646.

    PubMed  CAS  Google Scholar 

  20. Li YM, Mitsuhashi T, Wojciechowicz D, et al. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci 1996;93:11,047–11,052.

    Article  PubMed  CAS  Google Scholar 

  21. Ohgami N, Nagai R, Ikemoto M, et al. CD36 serves as a receptor for advanced glycation endproducts (AGE). J Diabet Complications 2002;16:56–59.

    Article  Google Scholar 

  22. Schmidt AM, Vianna M, Gerlach M, et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 1992;267:14,987–14,997.

    PubMed  CAS  Google Scholar 

  23. Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992;267:14,998–15,004.

    PubMed  CAS  Google Scholar 

  24. Brett J, Schmidt AM, Zou YS, et al. Tissue distribution of the receptor for advanced glycation endproducts (RAGE): expression in smooth muscle, cardiac myocytes, and neural tissue in addition to vasculature. Am J Pathol 1993;143:1699–1712.

    PubMed  CAS  Google Scholar 

  25. Ritthaler U, Deng Y, Zhang Y, et al. Expression of RAGE in peripheral occlusive vascular disease. Am J Pathol 1995;146:688–694.

    PubMed  CAS  Google Scholar 

  26. Hou FF, Ren H, Owen WF Jr, et al. Enhanced expression of receptor for advanced glycation end products in chronic kidney disease. J Am Soc Nephrol 2004;15:1889–1896.

    Article  PubMed  CAS  Google Scholar 

  27. Tanji N, Markowitz GS, Fu C, et al. The expression of advanced glycation endproducts and their cellular receptor RAGE in diabetic nephropathy and non-diabetic renal disease. J Am Soc Nephrol 2000;11:1656–1666.

    PubMed  CAS  Google Scholar 

  28. Hofmann MA, Drury S, Fu C, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999;97:889–901.

    Article  PubMed  CAS  Google Scholar 

  29. Schafer BW, Heinzmann CW. The S100 family of EF-hand calcium-binding proteins: functions and pathology. TIBS 1996;21:134–140.

    PubMed  CAS  Google Scholar 

  30. Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull 1995;37:417–429.

    Article  PubMed  CAS  Google Scholar 

  31. Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Intl J Biochem Cell Biol 2001;33:637–668.

    Article  CAS  Google Scholar 

  32. Hofmann MA, Drury S, Hudson BI, et al. RAGE and arthritis: The G82S polymorphism amplifies the inflammatory response. Genes Immun 2002;3:123–135.

    Article  PubMed  CAS  Google Scholar 

  33. Yan SS, Wu ZY, Zhang HP, et al. Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat Med 2003;9:287–293.

    Article  PubMed  CAS  Google Scholar 

  34. Chen Y, Yan SS, Colgan J, et al. Blockade of the late stagtes of autoimmune diabetes by inhibition of the receptor for advanced glycation end products. J Immunol 2004;173:1399–1405.

    PubMed  CAS  Google Scholar 

  35. Hori O, Brett J, Slattery T, et al. RAGE is a cellular binding site for amphoterin: mediation of neurite outgrowth and co-expression of RAGE and amphoterin in the developing nervous system. J Biol Chem 1995;270:25,752–25,761.

    Article  PubMed  CAS  Google Scholar 

  36. Taguchi A, Blood DC, del Toro G, et al. Blockade of amphoterin/RAGE signaling suppresses tumor growth and metastases. Nature 2000;405:354–336.

    Article  PubMed  CAS  Google Scholar 

  37. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999;285:248–251.

    Article  PubMed  CAS  Google Scholar 

  38. Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004;279:7370–7377.

    Article  PubMed  CAS  Google Scholar 

  39. Yan SD, Chen X, Chen M, et al. RAGE and amyloid-P peptide neurotoxicity in Alzheimer’s disease. Nature 1996;382:685–691.

    Article  PubMed  CAS  Google Scholar 

  40. Yan SD, Zhu H, Fu J, et al. Amyloid beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci USA 1997;94:5296–5301.

    Article  PubMed  CAS  Google Scholar 

  41. Yan SD, Zhu H, Zhu A, et al. Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat Med 2000;6:643–651.

    Article  PubMed  CAS  Google Scholar 

  42. Chavakis T, Bierhaus A, Al-Fakhri N, et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 2003;198:1507–1515.

    Article  PubMed  CAS  Google Scholar 

  43. Wautier JL, Zoukourian C, Chappey O, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble RAGE blocks hyperpermeability. J Clin Invest 1996;97:238–243.

    Article  PubMed  CAS  Google Scholar 

  44. Mattock M, Morrish N, Viberti G, Keen H, Fitzgerald AP, Jackson G. Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes 1992;41:736–741.

    Article  PubMed  CAS  Google Scholar 

  45. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993;88:2510–2516.

    PubMed  CAS  Google Scholar 

  46. Wendt TM, Tanji N, Guo J, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 2003;162:1123–1137.

    PubMed  CAS  Google Scholar 

  47. Cooper ME, Vranes D, Youssef S, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 1999;48:2229–2239.

    Article  PubMed  CAS  Google Scholar 

  48. Kang DH, Johnson RJ. Vascular endothelial growth factor: a new player in the pathogenesis of renal fibrosis. Curr Opin Nephrol Hypertens 2003;12:43–49.

    Article  PubMed  CAS  Google Scholar 

  49. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 2001;12:993–1000.

    PubMed  Google Scholar 

  50. Flyvbjerg A, Denner L, Schrijvers BF, et al. Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 2004;53:166–172.

    Article  PubMed  CAS  Google Scholar 

  51. Tsuji H, Iehara N, Masegi T, et al. Ribozyme targeting of receptor for advanced glycation endproducts in mouse mesangial cells. Biochem Biophys Res Commun 1998;245:583–588.

    Article  PubMed  CAS  Google Scholar 

  52. Yamomoto Y, Kato I, Doi T, et al. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invset 2001;108:261–268.

    Article  Google Scholar 

  53. Yan SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation endproducts with their receptors/binding proteins. J Biol Chem 1994;269:9889–9897.

    PubMed  CAS  Google Scholar 

  54. Lander HL, Tauras JM, Ogiste JS, Moss RA, Schmidt AM. Activation of the Receptor for Advanced Glycation Endproducts triggers a MAP Kinase pathway regulated by oxidant stress. J Biol Chem 1997;272:17,810–17,814.

    Article  PubMed  CAS  Google Scholar 

  55. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001;280:E685–E694.

    PubMed  CAS  Google Scholar 

  56. Deora AA, Win T, Vanhaesebroeck B, Lander HM. A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 3′-kinase to ras by redox stress. J Biol Chem 1998;273:29,923–29,928.

    Article  PubMed  CAS  Google Scholar 

  57. Huang JS, Guh JY, Chen HC, Hung WC, Lai HY, Chuang LY Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J Cell Biochem 2001;81:102–113.

    Article  PubMed  CAS  Google Scholar 

  58. Huttunen HJ, Fages C, Rauvala H. Receptor for Advanced Glycation Endproducts (RAGE)-mediated neurite outgrowth and activation of NF-kB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 1999;294:19,919–19,924.

    Article  Google Scholar 

  59. Huttunen HJ, Kuja-Panula J, Rauvala H. RAGE signaling induces CREB dependent chromogranin expression during neuronal differentiation. J Biol Chem 2002;277:38,635–38,646.

    Article  PubMed  CAS  Google Scholar 

  60. Yeh C-H, Sturgis L, Haidacher J, et al. Requirement for p38 and p44/42 Mitogen-activated protein kinases in RAGE-mediated Nuclear Factor Kappa B transcriptional activation and cytokine secretion. Diabetes 2001;50:1495–1504.

    Article  PubMed  CAS  Google Scholar 

  61. Sakaguchi T, Yan SF, Yan SD, et al. Central role of RAGE-dependent neointimal expansion in arterial restenosis. J Clin Invest 2003;111:959–972.

    Article  PubMed  CAS  Google Scholar 

  62. Fukami K, Ueda S, Yamagishi S, et al. AGEs activate mesangial TGF-beta-SMAD signaling via an angiotensin II type 1 receptor interaction. Kidney Int 2004;66:2137–2147.

    Article  PubMed  CAS  Google Scholar 

  63. Brizzi MF, Dentelli P, Rosso A, et al. RAGE-and TGF-beta receptor-, mediated signals converge on STAT5 and p21waf to control cell cycle progression of mesangial cells: a possible role in the development and progression of diabetic nephropathy. FASEB J 2004;18:1249–1251.

    PubMed  CAS  Google Scholar 

  64. Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation endproducts cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation endproducts (RAGE). J Clin Invest 2001;108:1853–1863.

    Article  PubMed  CAS  Google Scholar 

  65. Li JH, Wang W, Huang XR, et al. Advanced glycation endproducts induce tubular epithelial-myofibroblast transition through the RAGE ERK 1/2 MAP kinase signaling pathway. Am J Pathol 2004;164:1389–1397.

    PubMed  CAS  Google Scholar 

  66. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G. Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rats. Diabetes 1991;40:1328–1334.

    Article  PubMed  CAS  Google Scholar 

  67. Yamauchi A, Takei I, Makita Z, et al. Effects of aminoguanidine on serum advanced glycation endproducts, urinary albumin excretion, mesangial expansion, and glomerular basement membrane thickening in Otsuka Long-Evans Tokushima fatty rats. Diabetes Res Clin Pract 1997;34:127–133.

    Article  PubMed  CAS  Google Scholar 

  68. Lassila M, Seah KK, Allen TJ, et al. Accelerated nephropathy in diabetic apolipoprotein E knockout mouse: role of advanced glycation end products. J Am Soc Nephrol 2004;15:2125–2138.

    Article  PubMed  CAS  Google Scholar 

  69. Osicka TM, Yu Y, Panagiotopoulos S, et al. Prevention of albuminuria by aminoguanidine or ramipril in streptozotocin-induced diabetic rats is associated with the normalization of glomerular protein kinase C. Diabetes 2000;49:87–93.

    Article  PubMed  CAS  Google Scholar 

  70. Kelly DJ, Gilbert RE, Cox AJ, Soulis T, Jerums G, Cooper ME. Aminoguanidine ameliorates overexpression of prosclerotic growth factors and collagen deposition in experimental diabetic nephropathy. J Am Soc Nephrol 2001;12:2098–2107.

    PubMed  CAS  Google Scholar 

  71. Bolton WK, Cattran DC, Williams ME, et al. Randomized trial of an inhibitor of formation of advanced glycation endproducts in diabetic nephropathy. ACTION I Investigator Group. Am J Nephrol 2004;24:32–40.

    Article  PubMed  CAS  Google Scholar 

  72. Forbes JM, Thallas V, Thomas MC, et al. The breakdown of preexisting advanced glycation endproducts is associated with reduced renal fibrosis in experimental diabetes. FASEB J 2003;17:1762–1764.

    PubMed  CAS  Google Scholar 

  73. Thallas-Bonke V, Lindschau C, Riskalla B, et al. Attenuation of extracellular matrix accumulation in diabetic nephropathy by the advanced glycation end product cross link breaker ALT 711 via a protein kinase C alpha dependent pathway. Diabetes 2004;53:2921–2930.

    Article  PubMed  CAS  Google Scholar 

  74. Kass DA, Shapiro EP, Kawaguchi M, et al. Improved arterial compliance by a novel advanced glycation endproduct cross link breaker. Circulation 2001;104:1464–1470.

    Article  PubMed  CAS  Google Scholar 

  75. Alderson NL, Chachich ME, Frizzell N, et al. Effect of antioxidants and ACE inhibition on chemical modifications of proteins and progression of nephropathy in the streptozotocin diabetic rat. Diabetologia 2004;47:1385–1395.

    Article  PubMed  CAS  Google Scholar 

  76. Figarola JL, Scott S, Loera S, et al. LR-90, a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. Diabetologia 2003;46:1140–1152.

    Article  PubMed  CAS  Google Scholar 

  77. Davis BJ, Forbes JM, Thomas MC, et al. Superior renoprotective effects of combination therapy with ACE and AGE inhibition in the diabetic spontaneously hypertensive rat. Diabetologia 2004;47:89–97.

    Article  PubMed  CAS  Google Scholar 

  78. Forbes JM, Thomas MC, Thorpe SR, Alderson NL, Cooper ME. The effects of valsartan on the accumulation of circulating and renal advanced glycation endproducts in experimental diabetes. Kidney Int Suppl 2004;92:S105–S107.

    Article  PubMed  CAS  Google Scholar 

  79. The Diabetes Control and Complications Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;318:977–986.

    Article  Google Scholar 

  80. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC). JAMA 2003;290:2159–2167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

D’Agati, V., Schmidt, A.M. (2006). Glycation. In: Cortes, P., Mogensen, C.E. (eds) The Diabetic Kidney. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-153-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-153-6_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-624-5

  • Online ISBN: 978-1-59745-153-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics