Skip to main content

Angiogenesis and Ocular Tumorigenesis

  • Chapter
Ocular Angiogenesis

Part of the book series: Opthalmology Research ((OPHRES))

Abstract

The development of a tumor is dependent on a number of genetic and epigenetic changes. An important step for the propagation and progression of many solid tumors is the induction of a tumor vasculature, i.e., “the angiogenic switch” (1,2). This ensures an adequate supply of oxygen and metabolites for tumor growth and metastasis. This switch is activated when the angiogenic balance tips in favor of proangiogenesis; this results in the increased production of proangiogenic factors and/or downregulation of antiangiogenic factors. The angiogenic switch may occur at any stage of tumor progression, depending on the nature of the tumor and the microenvironment. However, tumor angiogenesis differs from physiological angiogenesis in several respects: the vascular structure, the endothelial cell and pericyte interactions, blood flow, increased permeability, and delayed maturation (36; Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653–660.

    Article  PubMed  CAS  Google Scholar 

  2. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Revs 2003;3: 401–410.

    CAS  Google Scholar 

  3. McDonald DM, Foss AJE. Endothelial cells of tumor vessels: Abnormal but not absent. Canc Metast Revs 2000; 19:109–120.

    Article  CAS  Google Scholar 

  4. Sivridis E, Giatromanolaki A, Koukourakis MI. The vascular network of tumours—what is it not for? J Pathol 2003;201:173–180.

    Article  PubMed  Google Scholar 

  5. Dvorak HF. How tumors make bad blood vessels and stroma. Am J Pathol 2003;162: 1747–1757.

    PubMed  CAS  Google Scholar 

  6. Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WMF. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol 2003; 162:183–193.

    PubMed  Google Scholar 

  7. Sheibani N, Frazier WA. Thrombospondin-1, PECAM-1, and regulation of angiogenesis. Histol Histopathol 1999; 14:285–294.

    PubMed  CAS  Google Scholar 

  8. Volpert OV. Modulation of endothelial cell survival by an inhibitor of angiogenesis thrombospondin-1: a dynamic balance. Cancer Metas Revs 2000; 19:87–92.

    Article  CAS  Google Scholar 

  9. Wang S, Zhifeng W, Sorenson CM, Lawler J, Sheibani N. Thrombospondin-1-deficient mice exhibit increased vascular density during retinal vascular development and are less sensitive to hyperoxia-mediated vessel obliteration. Dev Dyn 2003;228:630–642.

    Article  PubMed  CAS  Google Scholar 

  10. Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 1989;339:58–61.

    Article  PubMed  CAS  Google Scholar 

  11. Rastinejad F, Polverini PJ, Bouck NP. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989;56:345–355.

    Article  PubMed  CAS  Google Scholar 

  12. O’Reilly MS, Holmgren L, Shing Y, et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994;79:315–328.

    Article  PubMed  CAS  Google Scholar 

  13. O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277–285.

    Article  PubMed  CAS  Google Scholar 

  14. Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin αvβ3 for angiogenesis. Science 1994;264:569–571.

    Article  PubMed  CAS  Google Scholar 

  15. Brooks PC, Montgomery AMP, Rosenfeld M, et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79:1157–1164.

    Article  PubMed  CAS  Google Scholar 

  16. Storgard CM, Stupack DG, Jonczyk A, Goodman S, Fox RI, Cheresh DA. Decreased angiogenesis and arthritic disease in rabbits treated with an αvβ3 antagonist. J Clin Invest 1999;103:47–54.

    Article  PubMed  CAS  Google Scholar 

  17. Davis DW, McConkey DJ, Zhang W, Herbst RS. Antiangiogenic tumor therapy. BioTechniques 2003;34:1048–1063.

    PubMed  CAS  Google Scholar 

  18. Foss AJE, Cree IA, Dolin PJ, Hungerford JL. Modelling uveal melanoma. Br J Ophthalmol 1999;83:588–594.

    Article  PubMed  CAS  Google Scholar 

  19. Sheidow TG, Hooper PL, Crukley C, Young J, Heathcote JG. Expression of vascular endothelial growth factor in uveal melanoma and its correlation with metastasis. Br J Ophthalmol 2000;84:750–756.

    Article  PubMed  CAS  Google Scholar 

  20. Dithmar S, Rusciano D, Lynn MJ, Lawson DH, Armstrong CA, Grossniklaus HE. Neoadjuvant interferon alfa-2b treatment in a murine model for metastatic ocular melanoma. Arch Ophthalmol 2000;118:1085–1089.

    PubMed  CAS  Google Scholar 

  21. Boyd SR, Tan DSW, de Souza L, et al. Uveal melanomas express vascular endothelial growth factor and basic fibroblast growth factor and support endothelial cell growth. Br J Ophthalmol 2002;86:440–447.

    Article  PubMed  CAS  Google Scholar 

  22. Stitt AW, Gardiner TA. Anti-angiogenic therapy for uveal melanoma—more haste, less speed. Br J Ophthalmol 2002;86:368, 369.

    Article  PubMed  CAS  Google Scholar 

  23. Marback EF, Arias VEA, Paranhos Jr A, Soares FA, Murphree AL, Erwenne CM. Tumor angiogenesis as a prognostic factor for disease dissemination in retinoblastoma. Br J Ophthalmol 2003;87:1224–1228.

    Article  PubMed  Google Scholar 

  24. van der Velden PA, Zuidervaart W, Hurks MHMH, et al. Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. Int J Cancer 2003;106:472–479.

    Article  PubMed  CAS  Google Scholar 

  25. Rössler J, Dietrich T, Pavlakovic H, et al. Higher vessel densities in retinoblastoma with local invasive growth and metastasis. Am J Pathol 2004;164:391–394.

    PubMed  Google Scholar 

  26. Harbour JW. Clinical overview of uveal melanoma: introduction to tumors of the eye. In: Ocular Oncology, Albert DM, Polans A, eds. Marcel Dekker, New York: 2003:1–18.

    Google Scholar 

  27. Shields JA, Shields CL. Clinical overview: retinoblastoma. In: Ocular Oncology, Albert DM, Polans A, eds. Marcel Dekker, New York: 2003:19–34.

    Google Scholar 

  28. van Ginkel PR. Structural alterations and gene expression in the pathogenesis of uveal melanoma. In: Ocular Oncology, Albert DM, Polans A, eds. Marcel Dekker, New York: 2003:81–102.

    Google Scholar 

  29. Gombos DS, Mieler WF. Therapy of uveal melanoma: methods and risk factors associated with treatment. In: Ocular Oncology, Albert DM, Polans A, eds. Marcel Dekker, New York: 2003:321–352.

    Google Scholar 

  30. van Ginkel PR, Gee RL, Shearer RL, et al. Expression of the receptor tyrosine kinase Axl promotes ocular melanoma cell survival. Cancer Res 2004;64:128–134.

    Article  PubMed  Google Scholar 

  31. Apte RS, Niederkorn JY, Mayhew E, Alizadeh H. Angiostatin produced by certain primary uveal melanoma cell lines impedes the development of liver metastases. Arch Ophthalmol 2001;119:1805–1809.

    PubMed  CAS  Google Scholar 

  32. Dithmar S, Grossniklaus HE. Models of uveal melanoma: characterization of transgenic mice and other animal models for melanoma. In: Ocular Oncology, Albert DM, Polans A, eds. Marcel Dekker, New York: 2003:269–296.

    Google Scholar 

  33. Folberg R, Hendrix MJC, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000;156:361–381.

    PubMed  CAS  Google Scholar 

  34. Hendrix MJC, Seftor EA, Meltzer PS, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc Natl Acad Sci USA 2001;98:8018–8023.

    Article  PubMed  CAS  Google Scholar 

  35. Albert DM. Historic review of retinoblastoma. Opthalmology 1987;94:654–662.

    CAS  Google Scholar 

  36. Abramson DH, Schefler AC. The treatment of retinoblastoma. In: Ocular Oncology, Albert DM, Polans A, eds. Marcel Dekker, New York: 2003:353–376.

    Google Scholar 

  37. Windle JJ, Albert DM, O’Brien JM, et al. Retinoblastoma in transgenic mice. Nature 1990;343:665–669.

    Article  PubMed  CAS  Google Scholar 

  38. Chàvez-Barrios P, Hurwitz MY, Louie K, et al. Metastic and nonmetastic models of retinoblastoma. Am J Pathol 2000;157:1405–1412.

    Google Scholar 

  39. Windle JJ, Albert DM. Genetically engineered mouse models of retinoblastoma. In: Ocular Oncology, Albert DM, Polans A, eds. Marcel Dekker, New York: 2003:465–487.

    Google Scholar 

  40. Saulenas AM, Cohen SM, Key LL, Winter C, Albert DM. Vitamin D and retinoblastoma. Arch Ophthalmol 1988;106:533–535.

    Article  PubMed  CAS  Google Scholar 

  41. Shokravi MT, Marcus DM, Alroy J, Egan K, Saornil MA, Albert DM. Vitamin D inhibits angiogenesis in transgenic murine retinoblastoma. Invest Ophthal Vis Sci 1995;36:83–87.

    PubMed  CAS  Google Scholar 

  42. Audo I, Darjatmoko SR, Schlamp CL, et al. Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. Invest Ophthalmol Vis Sci 2003;44:4192–4199.

    Article  PubMed  Google Scholar 

  43. Suzuki T, Sano Y, Kinoshita S. Effects of 1α,25-dihydroxyvitamin D3 on langerhans cell migration and corneal neovascularization in mice. Invest Ophthalmol Vis Sci 2000;41:154–158.

    PubMed  CAS  Google Scholar 

  44. Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE. 1α,25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo. Circ Res 2000;87:214–220.

    PubMed  CAS  Google Scholar 

  45. Bernardi RJ, Johnson CS, Modzelewski RA, Trump DL. Antiproliferative effects of 1α,25-dihydroxyvitamin D3 and vitamin D analogs on tumor-derived endothelial cells. Endocrinology 2002;143:2508–2514.

    Article  PubMed  CAS  Google Scholar 

  46. Tosetti F, Ferrari N, De Flora S, Albini A. “Angioprevention”: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J 2002;16:2–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sheibani, N., Albert, D.M. (2006). Angiogenesis and Ocular Tumorigenesis. In: Tombrain-Tink, J., Barnstable, C.J. (eds) Ocular Angiogenesis. Opthalmology Research. Humana Press. https://doi.org/10.1007/978-1-59745-047-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-047-8_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-514-9

  • Online ISBN: 978-1-59745-047-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics