Skip to main content

Mendelian Inheritance

  • Chapter

Abstract

The basic patterns of genetic transmission in humans have been known for about a century, but are now coming to be understood at the molecular level. In addition to classical dominant, recessive, and sex-linked inheritance, more complex patterns have also been identified. These include maternal transmission of traits encoded in the mitochondrial genome, digenic traits determined by two distinctgenes, and genomic imprinting. It is becoming clear that both rare and common genetic traits are determined by a complex interaction of multiple genetic and nongenetic factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  • Augarten A, Kerem BS, Kerem E, Gazit E, Yahav Y. Correlation between genotype and phenotype in patients with cystic fibrosis. N Engl J Me 1993;329:1308–1313.

    Article  Google Scholar 

  • Cassidy SB, Dykens E, Williams CA. Prader-Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet 2000;97(2): 136–146.

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet 2001;106(1):18–26.

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara K, Berson EL, Dryja TP. Digenic retinitis pigmentosa due t mutations at the unlinked peripherin/RDS and ROM1 loci. Science 1994;264(5165):1604–1608.

    Article  PubMed  CAS  Google Scholar 

  • Kiesewetter S, Macek M Jr, Davis C, et al. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet 1993;5:274–278.

    Article  PubMed  CAS  Google Scholar 

  • Levy HL, Albers S. Genetic screening of newborns. Annu Rev Genomics Hum Genet 2000;1:139–177.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman AP, Fischbeck KH. Triplet repeat expansion in neuromuscular disease. Muscle Nerve 2000;23(6):843–850.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh GC, Olshan AF, Baird PA. Paternal age and the risk of birth defects in offspring. Epidemiology 1995;6:282–288.

    Article  PubMed  CAS  Google Scholar 

  • Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1989;2:90–95.

    Article  Google Scholar 

  • Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 2002;36:233–278.

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Baldwin CT, Constantinou CD. Mutations in type I procollagen genes that cause osteogenesis imperfecta.Adv Hum Genet 1990;19: 105–132.

    PubMed  CAS  Google Scholar 

  • Robinson PN, Booms P, Katzke S, et al. Mutations of FBN1 and geno-type-phenotype correlations in Marfan syndrome and related fib-rillinopathies. Hum Mutat 2002;20(3):153–161.

    Article  PubMed  CAS  Google Scholar 

  • Ruggieri M, Huson SM. The clinical and diagnostic implications of mosaicism in the neurofibromatoses. Neurology 2001;56(11) 1433–1443.

    PubMed  CAS  Google Scholar 

  • Sampson JR. TSC1 and TSC2: genes that are mutated in the human geneti disorder tuberous sclerosis. Biochem Soc Trans 2003;31(Pt 3):592–596.

    Article  PubMed  CAS  Google Scholar 

  • Shiang R, Thompson LM, Zhu Y-Z, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism achondroplasia. Cell 1994;78:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Paulsen M. Imprinting and disease. Semin Cell Dev Bio 2003;14(1):101–110.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this chapter

Cite this chapter

Korf, B.R. (2006). Mendelian Inheritance. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Medicine. Humana Press. https://doi.org/10.1007/978-1-59259-963-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-963-9_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-202-5

  • Online ISBN: 978-1-59259-963-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics