Skip to main content

Murine Models of Alcoholism

From QTL to Gene

  • Chapter

Abstract

Most behavioral responses to alcohol are known to be influenced by genetic factors. Human twin and adoption studies consistently show that susceptibility to alcohol abuse is heritable (1). The mode of inheritance is unknown, but is certainly polygenic and multifactorial, with a substantial environmental effect (1,2). Despite much research, the genes and causal pathways determining susceptibility to alcohol abuse and dependence remain relatively unknown. Identifying genes that mediate alcoholism will improve strategies for diagnosis, treatment, and ultimately prevention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foroud T, Li TK. Genetics of alcoholism: a review of recent studies in human and animal models. Am J Addict 1999;8:261–278.

    Article  PubMed  CAS  Google Scholar 

  2. Schuckit MA. A clinical model of genetic influences in alcohol dependence. J Stud Alcohol 1994;55:5–17.

    PubMed  CAS  Google Scholar 

  3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 4th ed., Washington, DC: American Psychiatric Association, 1994.

    Google Scholar 

  4. McClearn GE, Kakihana R. Selective breeding for ethanol sensitivity: short-sleep and long-sleep mice. In: McClearn GE, Deitrich RA, Erwin VG, eds. Development of animal models as pharmacogenetic tools. Washington: NIAAA Research Monograph No. 6, US Department of Health and Human Services, 1981:147–159.

    Google Scholar 

  5. Ponomarev I, Crabbe JC. A novel method to assess initial sensitivity and acute functional tolerance to hypnotic effects of ethanol. J Pharmacol Exp Ther 2002;302:257–263.

    Article  PubMed  CAS  Google Scholar 

  6. Phillips TJ, Crabbe JC. Behavioral studies of genetic differences in alcohol action. In: Crabbe JC, Harris RA, eds. The genetic basis of alcohol and drug actions. New York: Plenum, 1991:25–104.

    Google Scholar 

  7. Whatley VJ, Johnson TE, Erwin VG. Identification and confirmation of quantitative trait loci regulating alcohol consumption in congenic strains of mice. Alcohol Clin Exp Res 1999;23:1262–1271.

    Article  PubMed  CAS  Google Scholar 

  8. Kliethermes CL, Cronise K, Crabbe JC. Anxiety-like behavior in mice in two apparatuses during withdrawal from chronic ethanol vapor inhalation. Alcohol Clin Exp Res 2004;28:1012–1019.

    Article  PubMed  CAS  Google Scholar 

  9. Phillips TJ, Burkhart-Kasch S, Terdal ES, Crabbe JC. Response to selection for ethanol-induced locomotor activation: genetic analyses and selection response characterization. Psychopharmacology 1991;103:557–566.

    Article  PubMed  CAS  Google Scholar 

  10. Deitrich RA, Bludeau P, Erwin VG. Phenotypic and genotypic relationships between ethanol tolerance and sensitivity in mice selectively bred for initial sensitivity to ethanol (SS and LS) or development of acute tolerance (HAFT and LAFT). Alcohol Clin Exp Res 2000;24:595–604.

    Article  PubMed  CAS  Google Scholar 

  11. Crabbe JC. Sensitivity to ethanol in inbred mice: genotypic correlations among several behavioral responses. Behav Neurosci 1983;97:280–289.

    Article  PubMed  CAS  Google Scholar 

  12. Risinger FO, Cunningham CL, Blevins RA, Holloway FA. Place conditioning: what does it add to our understanding of ethanol reward? Alcohol Clin Exp Res 2002;26:1444–1452.

    PubMed  Google Scholar 

  13. Schuckit MA. Reactions to alcohol in sons of alcoholics and controls. Alcohol Clin Exp Res 1988;12:465–470.

    Article  PubMed  CAS  Google Scholar 

  14. Schuckit MA. Low level of response to alcohol as a predictor of future alcoholism. Am J Psychiatry 1994;151:184–189.

    PubMed  CAS  Google Scholar 

  15. Schuckit MA, Tsuang JW, Anthenelli RM, Tipp JE, Nurnberger JI, Jr. Alcohol challenges in young men from alcoholic pedigrees and control families: a report from the COGA project. J Stud Alcohol 1996;57:368–377.

    PubMed  CAS  Google Scholar 

  16. Falconer DS, Mackay TF. Introduction to quantitative genetics, 4th ed., England: Longman, 1996.

    Google Scholar 

  17. Grupe A, Germer S, Usuka J, et al. In silico mapping of complex disease-related traits in mice. Science 2001;292:1915–1918.

    Article  PubMed  CAS  Google Scholar 

  18. Belknap JK, Crabbe JC, Young ER. Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology 1993;112:503–510.

    Article  PubMed  CAS  Google Scholar 

  19. Crabbe JC, Young ER, Kosobud A. Genetic correlations with ethanol withdrawal severity. Pharmacol Biochem Behav 1983;18(Suppl):541–547.

    Article  PubMed  Google Scholar 

  20. Crabbe JC, Gallaher ES, Phillips TJ, Belknap JK. Genetic determinants of sensitivity to ethanol in inbred mice. Behav Neurosci 1994;108:186–195.

    Article  PubMed  CAS  Google Scholar 

  21. Crabbe JC, Janowsky JS, Young ER, Righter H. Handling induced convulsions in twenty inbred strains of mice. Subst Alcohol Actions/Misuse 1980;1: 149–153.

    Google Scholar 

  22. Crabbe JC. Genetic differences in locomotor activation in mice. Pharmacol Biochem Behav 1986;25:289–292.

    Article  PubMed  CAS  Google Scholar 

  23. Rodgers DA, McClearn GE. Mouse strain differences in preference for various concentrations of alcohol. Q J Stud Alcohol 1962;23:26–33.

    PubMed  CAS  Google Scholar 

  24. McClearn GE. The tools of pharmacogenetics. In: Crabbe JC, Harris RA, eds. The genetic basis of alcohol and drug actions. New York: Plenum Press, 1991:1–23.

    Google Scholar 

  25. Crabbe JC, Kosobud A, Tam BR, Young ER, Deutsch CM. Genetic selection of mouse lines sensitive (COLD) and resistant (HOT) to acute ethanol hypothermia. Alcohol Drug Res 1987;7:163–174.

    PubMed  CAS  Google Scholar 

  26. Crabbe JC, Phillips TJ. Selective breeding for alcohol withdrawal severity. Behav Genet 1993;23:171–177.

    Article  PubMed  CAS  Google Scholar 

  27. Grahame NJ, Li TK, Lumeng L. Selective breeding for high and low alcohol preference in mice. Behav Genet 1999;29:47–57.

    Article  PubMed  CAS  Google Scholar 

  28. Erwin VG, Deitrich RA. Genetic selection and characterization of mouse lines for acute functional tolerance to ethanol. J Pharmacol Exp Ther 1996;279:1310–1317.

    PubMed  CAS  Google Scholar 

  29. McClearn GE, Wilson JR, Petersen DR, Allen DL. Selective breeding in mice for severity of the ethanol withdrawal syndrome. Subst Alcohol Actions/Misuse 1982;3:135–143.

    CAS  Google Scholar 

  30. Lumeng L, Waller MB, McBride WJ, Li TK. Different sensitivities to ethanol in alcohol-preferring and-nonpreferring rats. Pharmacol Biochem Behav 1982;16:125–130.

    Article  PubMed  CAS  Google Scholar 

  31. Li TK, Lumeng L, Doolittle DP, et al. Behavioral and neurochemical associations of alcohol-seeking behaviors. In: Kuriyama K, Takada A, Ishii H, eds. Biomedical and social aspects of alcohol and alcoholism. Amsterdam: Elsevier, 1988:435–438.

    Google Scholar 

  32. Fadda F, Mosca E, Colombo G, Gessa GL. Effect of spontaneous ingestion ethanol on brain dopamine metabolism. Life Sci 1989;44:281–287.

    Article  PubMed  CAS  Google Scholar 

  33. Spuhler KP, Deitrich RA, Baker RC. Selective breeding of rats differing in sensitivity to the hypnotic effects of acute ethanol administration. In: Deitrich RA, Pawlowski AA, eds. Initial sensitivity to alcohol. Washington, DC: National Institute on Alcohol Abuse and Alcoholism Research Monograph No. 20, 1990:87–102.

    Google Scholar 

  34. Bailey DW. Recombinant-inbred strains bilineal congenic strains. In: Foster HL, Small JD, Fox FG, eds. The mouse in biomedical research. New York: Academic Press, 1981:223–239.

    Google Scholar 

  35. Williams RW, Gu J, Qi S, Lu L. The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysis. Genome Biol 2001;2:0046.1–0046.18.

    Google Scholar 

  36. Belknap JK. Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strains. Behav Genet 1998;28:29–38.

    Article  PubMed  CAS  Google Scholar 

  37. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989;121:185–199.

    PubMed  CAS  Google Scholar 

  38. Silver LM. Mouse genetics: concepts and applications. New York: Oxford University Press, 1995.

    Google Scholar 

  39. Bennett B, Beeson M, Gordon L, Johnson TE. Reciprocal congenics defining individual quantitative trait loci for sedative/hypnotic sensitivity to ethanol. Alcohol Clin Exp Res 2002;26:149–157.

    PubMed  CAS  Google Scholar 

  40. Heston WDW, Erwin VG, Anderson SM, Robbins H. A comparison of the effects of alcohol in mice selectively bred for differences in ethanol sleep-time. Life Sci 1974;14:365–370.

    Article  PubMed  CAS  Google Scholar 

  41. Howerton TC, O’Connor MF, Collins AC. Differential effects of long-chain alcohols in long-and short-sleep mice. Psychopharmacology 1983; 79: 313–317.

    Article  PubMed  CAS  Google Scholar 

  42. Smolen TN, Smolen A. Blood and brain ethanol concentrations during absorption and distribution in long-sleep and short-sleep mice. Alcohol 1989;6:33–38.

    Article  PubMed  CAS  Google Scholar 

  43. Phillips TJ, Gilliam DM, Dudek BC. An evaluation of the role of ethanol clearance rate in the differential response of long-sleep and short-sleep mice to ethanol. Alcohol 1984;l:373–378.

    Article  Google Scholar 

  44. Dudek BC, Abbott ME. A biometrical genetic analysis of ethanol response in selectively bred long-sleep and short-sleep mice. Behav Genet 1984;14:1–19.

    Article  PubMed  CAS  Google Scholar 

  45. DeFries JC, Wilson JR, Erwin VG, Petersen DR. LS × SS recombinant inbred strains of mice: initial characterization. Alcohol Clin Exp Res 1989;13; 196–200.

    Article  PubMed  CAS  Google Scholar 

  46. Markel PD, DeFries JC, Johnson TE. Ethanol-induced anesthesia in inbred strains of long-sleep and short-sleep mice: a genetic analysis using repeated measures. Behav Genet 1995;25:67–73.

    Article  PubMed  CAS  Google Scholar 

  47. Markel PD, Johnson TE. Initial characterization of STS markers in the LS × SS series of recombinant inbred strains. Mamm Genome 1994;5:199–202.

    Article  PubMed  CAS  Google Scholar 

  48. Markel PD, Fulker DW, Bennett B, et al. Quantitative trait loci for ethanol sensitivity in the LS × SS recombinant inbred strains: interval mapping. Behav Genet 1996;26:447–458.

    Article  PubMed  CAS  Google Scholar 

  49. Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992;69:315–324.

    PubMed  CAS  Google Scholar 

  50. Fulker DW, Markel PD, DeFries JC, Corley RP, Johnson, TE. Use of interval mapping to localize quantitative trait loci in recombinant inbred strains. Alcohol Clin Exp Res 1994;18:452.

    Google Scholar 

  51. Markel PD, Bennett B, Beeson M, Gordon L, Johnson TE. Confirmation of quantitative trait loci for ethanol sensitivity in long-sleep and short-sleep mice. Genome Res 1997;7:92–99.

    Article  PubMed  CAS  Google Scholar 

  52. Basten C, Weir BS, Zeng Z-B. QTL cartographer: a reference manual and tutorial for QTL mapping. Raleigh, NC: Department of Statistics, North Carolina State University, 1997.

    Google Scholar 

  53. Manly KF, Olson JM. Overview of QTL mapping software and introduction to MapManager QT. Mamm Genome 1999;10:327–334.

    Article  PubMed  CAS  Google Scholar 

  54. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995;11:241–247.

    Article  PubMed  CAS  Google Scholar 

  55. Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics 1994;138:963–971.

    PubMed  CAS  Google Scholar 

  56. Broman K. Review of statistical methods for QTL mapping in experimental crosses. Lab Anim 2001;30:44–52.

    CAS  Google Scholar 

  57. Doerge RW. Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 2002;3:43–52.

    Article  PubMed  CAS  Google Scholar 

  58. Markel PD, Corley RP. A multivariate analysis of repeated measures: linkage of the albinism gene (Tyr) to a QTL influencing ethanol-induced anesthesia in laboratory mice. Psychiatr Genet 1994;4:205–210.

    Article  PubMed  CAS  Google Scholar 

  59. Belknap JK, Richards SP, O’Toole LA, Helms ML, Phillips TJ. Short-term selective breeding as a tool for QTL mapping: ethanol preference drinking in mice. Behav Genet 1997;27:55–66.

    Article  PubMed  CAS  Google Scholar 

  60. Dudek BC, Tritto T. Classical and neoclassical approaches to the genetic analysis of alcohol-related phenotypes. Alcohol Clin Exp Res 1995;19:802–810.

    Article  PubMed  CAS  Google Scholar 

  61. Bennett B, Beeson M, Gordon L, Johnson TE. Quick method for confirmation of quantitative trait loci. Alcohol Clin Exp Res 1997;21:767–772.

    PubMed  CAS  Google Scholar 

  62. Flaherty L. Congenic strains. In: Foster HL, Small FD, Fox FG, eds. The mouse in biomedical research. New York: Academic, 1981:215–222.

    Google Scholar 

  63. Visscher PM. Speed congenics: accelerated genome recovery using genetic markers. Genet Res 1999;74:81–85.

    Article  PubMed  CAS  Google Scholar 

  64. Wakeland E, Morel L, Achey K, Yui M, Longmate J. Speed congenics: a classic technique in the fast lane. Immunol Today 1997;10:42–47.

    Google Scholar 

  65. Markel P, Shu P, Ebeling C, et al. Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 1997;17:280–284.

    Article  PubMed  CAS  Google Scholar 

  66. Bennett B, Johnson TE. Development of congenics for hypnotic sensitivity to ethanol by QTL-marker-assisted counter selection. Mamm Genome 1998;9:969–974.

    Article  PubMed  CAS  Google Scholar 

  67. Phillips TJ, Crabbe JC, Metten P, Belknap JK. Localization of genes affecting alcohol drinking in mice. Alcohol Clin Exp Res 1994;18:931–941.

    Article  PubMed  CAS  Google Scholar 

  68. Melo JA, Shendure J, Pociask K, Silver LM. Identification of sex-specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nat Genet 1996;13:147–153.

    Article  PubMed  CAS  Google Scholar 

  69. Peirce JL, Derr R, Shendure J, Kolata T, Silver LM. A major influence of sex-specific loci on alcohol preference in C57BL/6 and DBA/2 inbred mice. Mamm Genome 1998;9:942–948.

    Article  PubMed  CAS  Google Scholar 

  70. Tarantino LM, McClearn GE, Rodriguez LA, Plomin R. Confirmation of quantitative trait loci for alcohol preference in mice. Alcohol Clin Exp Res 1998;22:1099–1105.

    PubMed  CAS  Google Scholar 

  71. Phillips TJ, Belknap JK, Buck KJ, Cunningham CL. Genes on mouse chromosomes 2 and 9 determine variation in ethanol consumption. Mamm Genome 1998;9:936–941.

    Article  PubMed  CAS  Google Scholar 

  72. Gill K, Desaulniers N, Desjardins P, Lake K. Alcohol preference in AXB/BXA recombinant inbred mice: gender differences and gender-specific quantitative trait loci. Mamm Genome 1998;9:929–935.

    Article  PubMed  CAS  Google Scholar 

  73. Belknap JK, Atkins AL. The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies. Mamm Genome 2001;12:893–899.

    Article  PubMed  CAS  Google Scholar 

  74. McClearn GE, Tarantino LM, Rodriguez LA, Jones BC, Blizard DA, Plomin R. Genotypic selection provides experimental confirmation for an alcohol consumption quantitative trait locus in mouse. Mol Psychiatry 1997;2:486–489.

    Article  PubMed  CAS  Google Scholar 

  75. Hitzemann R, Cipp L, Demarest K, Mahjubi E, McCaughran J, Jr. Genetics of ethanol-induced locomotor activation: detection of QTLs in a C57BL/6J × DBA/2J F2 intercross. Mamm Genome 1998;9:956–962.

    Article  PubMed  CAS  Google Scholar 

  76. Demarest K, McCaughran J, Jr, Mahjubi E, Cipp L, Hitzemann R. Identification of an acute ethanol response quantitative trait locus on mouse chromosome 2. J Neurosci 1999;15:549–561.

    Google Scholar 

  77. Hitzemann R, Demarest K, Koyner J, et al. Effect of genetic cross on the detection of quantitative trait loci and a novel approach to mapping QTLs. Pharmacol Biochem Behav 2000;67:767–772.

    Article  PubMed  CAS  Google Scholar 

  78. Demarest K, Koyner J, McCaughran J, Jr, Cipp L, Hitzemann R. Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity. Behav Genet 2001;31:79–91.

    Article  PubMed  CAS  Google Scholar 

  79. Erwin VG, Radcliffe RA, Gehle VM, Jones BC. Common quantitative trait loci for alcohol-related behaviors and central nervous system neurotensin measures: locomotor activation. J Pharmacol Exp Ther 1997;280:919–926.

    PubMed  CAS  Google Scholar 

  80. Gill K, Boyle A, Lake K, Desaulniers N. Alcohol-induced locomotor activation in C57BL/6J, A/J, and AXB/BXA recombinant inbred mice: strain distribution patterns and quantitative trait loci analysis. Psychopharmacology 2000;150:412–421.

    Article  PubMed  CAS  Google Scholar 

  81. Buck KJ, Metten P, Belknap JK, Crabbe JC. Quantitative trait loci involved in genetic predisposition to acute alcohol withdrawal in mice. J Neurosci 1997;17:3946–3955.

    PubMed  CAS  Google Scholar 

  82. Cunningham CL. Localization of genes influencing ethanol-induced conditioned place preference and locomotor activity in BXD recombinant inbred mice. Psychopharmacology 1995;120:28–41.

    Article  PubMed  CAS  Google Scholar 

  83. Crabbe JC, Belknap JK, Mitchell SR, Crawshaw LI. Quantitative trait loci mapping of genes that influence the sensitivity and tolerance to ethanol-induced hypothermia in BXD recombinant inbred mice. J Pharmacol Exp Ther 1994;269:184–192.

    PubMed  CAS  Google Scholar 

  84. Crabbe JC, Phillips TJ, Gallaher EJ, Crawshaw LI, Mitchell SR. Common genetic determinants of the ataxic and hypothermic effects of ethanol in BXD/Ty recombinant inbred mice: genetic correlations and quantitative trait loci. J Pharmacol Exp Ther 1996;277:624–632.

    PubMed  CAS  Google Scholar 

  85. Risinger FO, Cunningham CL. Ethanol-induced conditioned taste aversion in BXD recombinant inbred mice. Alcohol Clin Exp Res 1998;22:1234–1244.

    PubMed  CAS  Google Scholar 

  86. Crabbe JC, Phillips TJ, Buck KJ, Cunningham CL, Belknap JK. Identifying genes for alcohol and drug sensitivity: recent progress and future directions. Trends Neurosci 1999;22:173–179.

    Article  PubMed  CAS  Google Scholar 

  87. Crabbe JC. Provisional mapping of quantitative trait loci for chronic ethanol withdrawal severity in BXD recombinant inbred mice. J Pharmacol Exp Ther 1998;286:263–271.

    PubMed  CAS  Google Scholar 

  88. Browman KE, Crabbe JC. Quantitative trait loci affecting ethanol sensitivity in BXD recombinant inbred mice. Alcohol Clin Exp Res 2000;24:17–23.

    Article  PubMed  CAS  Google Scholar 

  89. Cheverud JM. Detecting epistasis among quantitative trait loci. In: Wolf JB, Brodie ED, III, Wade MJ, eds. Epistasis and the evolutionary process. New York: Oxford University Press, 2000:58–81.

    Google Scholar 

  90. Tanksley SD. Mapping polygenes. Ann Rev Genet 1993;27:205–233.

    Article  PubMed  CAS  Google Scholar 

  91. Chase K, Adler FR, Lark KG. Epistat: a computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor Appl Genet 1997;94:724–730.

    Article  Google Scholar 

  92. Fernandez JR, Tarantino LM, Hofer SM, Vogler GP, McClearn GE. Epistatic quantitative trait loci for alcohol preference in mice. Behav Genet 2000;30:431–437.

    Article  PubMed  CAS  Google Scholar 

  93. Nadeau JH, Singer JB, Matin A, Lander ES. Analysing complex genetic traits with chromosome substitution strains. Nat Genet 2000;24:221–225.

    Article  PubMed  CAS  Google Scholar 

  94. Darvasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic-mapping. Genetics 1995;141:1199–1207.

    PubMed  CAS  Google Scholar 

  95. Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 1998;18:19–24.

    Article  PubMed  CAS  Google Scholar 

  96. Fehr C, Shirley RL, Belknap JK, Crabbe JC, Buck KJ. Congenic mapping of alcohol and pentobarbital withdrawal liability loci to a < centimorgan interval of murine chromosome 4: identification of Mpdz as a candidate gene. J Neurosci 2002;22:3730–3738.

    PubMed  CAS  Google Scholar 

  97. Mott R, Talbot CJ, Turri MG, Collins AC, Flint J. A method for fine-mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci USA 2000;97:12649–12654.

    Article  PubMed  Google Scholar 

  98. Talbot CJ, Nicod A, Cherny SS, Fulker DW, Collins AC, Flint J. High-resolution mapping of quantitative trait loci in outbred mice. Nat Genet 1999;21:305–308.

    Article  PubMed  CAS  Google Scholar 

  99. Bennett B, Beeson M, Gordon L, Carosone-Link P, Johnson TE. Genetic dissection of quantitative trait loci specifying sedative/hypnotic sensitivity to ethanol: mapping with interval-specific congenic recombinant lines. Alcohol Clin Exp Res 2002;26:1615–1624.

    PubMed  CAS  Google Scholar 

  100. Hartwell LH, Hood L, Goldberg ML, Reynolds AE, Silver LM, Veres RC. Genetics: from genes to genomes. Boston: McGraw-Hill, 2000:731–751.

    Google Scholar 

  101. Strachan T, Read AP. Human molecular genetics 2. Oxford: BIOD Scientific Publisher Ltd, 1999:169–201.

    Google Scholar 

  102. Buck KJ, Hood HM. Genetic association of a GABAA receptor γ2 subunit variant with severity of acute physiological dependence on alcohol. Mamm Genome 1998;9:975–978.

    Article  PubMed  CAS  Google Scholar 

  103. Hood HM, Buck KJ. Allelic variation in the GABAA receptor γ2 subunit is associated with genetic susceptibility to ethanol-induced motor incoordination and hypothermia, conditioned taste aversion, and withdrawal in BXD/Ty recombinant inbred mice. Alcohol Clin Exp Res 2000;24: 1327–1334.

    PubMed  CAS  Google Scholar 

  104. Xu Y, Demarest K, Hitzemann R, Sikela JM. Gene coding variant in Cas1 between the C57BL/6J and DBA/2J inbred mouse strains: linkage to a QTL for ethanol-induced locomotor activation. Alcohol Clin Exp Res 2002;26:1–7.

    PubMed  CAS  Google Scholar 

  105. Ehringer MA, Thompson J, Conroy O, et al. High-throughput sequence identification of gene coding variants within alcohol-related QTLs. Mamm Genome 2001;12:657–663.

    Article  PubMed  CAS  Google Scholar 

  106. Ehringer MA, Thompson J, Conroy O, et al. Fine mapping of polymorphic alcohol-related quantitative trait loci candidate genes using interval-specific congenic recombinant mice. Alcohol Clin Exp Res 2002;26:1603–1608.

    PubMed  CAS  Google Scholar 

  107. Rikke B, Johnson TE. Towards the cloning of genes underlying murine QTLs. Mamm Genome 1998;9:963–968.

    Article  PubMed  CAS  Google Scholar 

  108. Reilly MT, Buck KJ. GABAA receptor β2 subunit mRNA content is differentially regulated in ethanol-dependent DBA/2J and C57BL/6J mice. Neurochem Int 2000;37:443–452.

    Article  PubMed  CAS  Google Scholar 

  109. Keir WJ, Morrow AL. Differential expression of GABAA receptor subunit mRNAs in ethanol-naïve withdrawal seizure resistant (WSR) vs. withdrawal seizure prone (WSP) mouse brain. Mol Brain Res 1994;25:200–208.

    Article  PubMed  CAS  Google Scholar 

  110. Hitzemann B, Hitzemann R. Genetics, ethanol, and the Fos response: a comparison of the C57BL/6J and DBA/2J mouse strains. Alcohol Clin Exp Res 1997;21:1497–1507.

    PubMed  CAS  Google Scholar 

  111. Demarest K, Hitzemann B, Hitzemann R. Further evidence that the central nucleus of the amygdala is associated with ethanol-induced activation. Alcohol Clin Exp Res 1998;22:1531–1537.

    PubMed  CAS  Google Scholar 

  112. Demarest K, Hitzemann B, Phillips TJ, Hitzemann R. Ethanol-induced expression of c-fos differentiates the FAST and SLOW selected lines of mice. Alcohol Clin Exp Res 1999;23:87–95.

    PubMed  CAS  Google Scholar 

  113. Ryabinin AE, Wang Y-M, Freeman P, Risinger FO. Selective effects of alcohol drinking on restraint-induced expression of immediate early genes in mouse brain. Alcohol Clin Exp Res 1999;23:1272–1280.

    Article  PubMed  CAS  Google Scholar 

  114. Bachtell RK, Wang Y-M, Freeman P, Risinger FO, Ryabinin AE. Alcohol drinking produces brain region-selective changes in expression of inducible transcription factors. Brain Res 1999;847:157–165.

    Article  PubMed  CAS  Google Scholar 

  115. Ryabinin AE, Bachtell RK, Freeman P, Risinger FO. ITF expression in mouse brain during acquisition of alcohol self-administration. Brain Res 2001;890:192–195.

    Article  PubMed  CAS  Google Scholar 

  116. Xu Y, Ehringer M, Yang F, Sikela JM. Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization. Alcohol Clin Exp Res 2001;25:810–818.

    Article  PubMed  CAS  Google Scholar 

  117. Rimondini R, Arlinde C, Sommer W, Heilig M. Long-lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB J 2002;16:27–35.

    Article  PubMed  CAS  Google Scholar 

  118. Daniels GM, Buck KJ. Expression profiling identifies strain-specific changes associated with ethanol withdrawal in mice. Genes Brain Behav 2002;1:35–45.

    Article  PubMed  CAS  Google Scholar 

  119. Saito SM, Smiley J, Toth R, Vadasz C. Microarray analysis of gene expression in rat hippocampus after chronic ethanol treatment. Neurochem Res 2002;10:1221–1229.

    Article  Google Scholar 

  120. Tabakoff B, Bhave SV, Hoffman PL. Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviors. J Neurosci 2003;23:4491–4498.

    PubMed  CAS  Google Scholar 

  121. Treadwell JA, Singh SM. Microarray analysis of mouse brain gene expression following acute ethanol treatment. Neurochem Res 2004;29:357–369.

    Article  PubMed  CAS  Google Scholar 

  122. Engel SR, Lyons CR, Allan AM. 5-HT3 receptor over-expression decreases ethanol self administration in transgenic mice. Psychopharmacology 1998;140:243–248.

    Article  PubMed  CAS  Google Scholar 

  123. Sung K-W, Engel SR, Allan AM, Lovinger DM. 5-HT3 receptor function and potentiation by alcohols in frontal cortex neurons from transgenic mice overexpressing the receptor. Neuropharmacology 2000;39:2346–2351.

    Article  PubMed  CAS  Google Scholar 

  124. Thiele TE, Marsh DJ, Ste. Marie L, Bernstein IL, Palmiter RD. Ethanol consumption and resistance are inversely related to neuropeptide Y levels. Nature 1998;396:366–369.

    Article  PubMed  CAS  Google Scholar 

  125. Rudolph U, Mohler H. Genetically modified animals in pharmacological research: future trends. Eur J Pharmacol 1999;375:327–337.

    Article  PubMed  CAS  Google Scholar 

  126. Babinet C, Cohen-Tannoudji M. Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. An Acad Bras Cienc 2001;73: 365–383.

    PubMed  CAS  Google Scholar 

  127. Crabbe JC, Phillips TJ, Feller DJ, et al. Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat Genet 1996;14: 98–101.

    Article  PubMed  CAS  Google Scholar 

  128. Crabbe JC, Wahlsten D, Dudek BC. Genetics of mouse behavior: interactions with laboratory environment. Science 1999;284:1670–1672.

    Article  PubMed  CAS  Google Scholar 

  129. Bouwknecht JA, Hijzen TH, van der Gugten J, Maes RAA, Hen R, Olivier B. Ethanol intake is not elevated in male 5-HT1B receptor knockout mice. Eur J Pharmacol 2000;403:95–98.

    Article  PubMed  CAS  Google Scholar 

  130. Risinger FO, Bormann NM, Oakes RA. Reduced sensitivity to ethanol reward, but not ethanol aversion, in mice lacking 5-HT1B receptors. Alcohol Clin Exp Res 1996;20:1401–1405.

    Article  PubMed  CAS  Google Scholar 

  131. Kelai S, Aissi F, Lesch KP, Cohen-Salmon C, Hamon M, Lanfumey L. Alcohol intake after serotonin transporter inactivation in mice. Alcohol Alcohol 2003;38:386–389.

    PubMed  CAS  Google Scholar 

  132. Thiele TE, Miura GI, Marsh DJ, Bernstein IL, Palmiter RD. Neurobiological responses to ethanol in mutant mice lacking neuropeptide Y or the Y5 receptor. Pharmacol Biochem Behav 2000;67:683–691.

    Article  PubMed  CAS  Google Scholar 

  133. Homanics GE, Ferguson C, Quinlan JJ, et al. Gene knockout of the α6 subunit of the γ-aminobutyric acid type A receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics. Mol Pharmacol 1997;51: 588–596.

    PubMed  CAS  Google Scholar 

  134. Homanics GE, Le NQ, Kist F, Mihalek R, Hart AR, Quinlan JJ. Ethanol tolerance and withdrawal responses in GABAA receptor alpha 6 subunit null allele mice and in inbred C57BL/6J and strain 129/SvJ mice. Alcohol Clin Exp Res 1998;22:259–265.

    PubMed  CAS  Google Scholar 

  135. Mihalek RM, Bowers BJ, Wehner JM, et al. GABAA-receptor δ subunit knock-out mice have multiple defects in behavioral responses to ethanol. Alcohol Clin Exp Res 2001;25:1708–1718.

    PubMed  CAS  Google Scholar 

  136. Quinlan JJ, Homanics GE, Firestone LL. Anesthesia sensitivity in mice that lack the beta3 subunit of the gamma-aminobutyric acid type A receptor. Anesthesiology 1998;88:775–780.

    Article  PubMed  CAS  Google Scholar 

  137. Homanics GE, Harrison NL, Quinlan JJ, et al. Normal electrophysiological and behavioral responses to ethanol in mice lacking the long splice variant of the γ2 subunit of the γ-aminobutyric type A receptor. Neuropharmacology 1999;38:253–265.

    Article  PubMed  CAS  Google Scholar 

  138. Blednov YA, Jung S, Alva H, et al. Deletion of the alpha1 or beta2 subunit of GABAA receptors reduces actions of alcohol and other drugs. J Pharmacol Exp Ther 2003;304:30–36.

    Article  PubMed  CAS  Google Scholar 

  139. Blednov YA, Walker D, Alva H, Creech K, Findlay G, Harris RA. GABAA receptor alpha 1 and beta 2 subunit null mutant mice: behavioral responses to ethanol. J Pharmacol Exp Ther 2003;305:854–863.

    Article  PubMed  CAS  Google Scholar 

  140. Kralic JE, Wheeler M, Renzi K, et al. Deletion of GABAA receptor alpha 1 subunit-containing receptors alters responses to ethanol and other anesthetics. J Pharmacol Exp Ther 2003;305:600–607.

    Article  PubMed  CAS  Google Scholar 

  141. El-Ghundi M, George SR, Drago J, et al. Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Euro J Pharmacol 1998;353:149–158.

    Article  CAS  Google Scholar 

  142. Cunningham CL, Howard MA, Gill SJ, Rubinstein M, Low MJ, Grandy DK. Ethanol-conditioned place is reduced in dopamine D2 receptor-deficient mice. Pharmacol Biochem Behav 2000;67:693–699.

    Article  PubMed  CAS  Google Scholar 

  143. Phillips TJ, Brown KJ, Burkhart-Kasch S, et al. Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat Neurosci 1998;1:610–615.

    Article  PubMed  CAS  Google Scholar 

  144. Palmer AA, Low MJ, Grandy DK, Phillips TJ. Effects of a Drd2 deletion mutation on ethanol-induced locomotor stimulation and sensitization suggest a role for epistasis. Behav Genet 2003;33:311–324.

    Article  PubMed  Google Scholar 

  145. Boyce-Rustay JM, Risinger FO. Dopamine D3 receptor knockout mice and the motivational effects of ethanol. Pharmacol Biochem Behav 2003;75: 373–379.

    Article  PubMed  CAS  Google Scholar 

  146. Rubinstein M, Phillips TJ, Bunzow JR, et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and amphetamine. Cell 1997;90: 91–1001.

    Article  Google Scholar 

  147. Bowers BJ, Owen EH, Collins AC, Abeliovich A, Tonegawa S, Wehner JM. Decreased ethanol sensitivity and tolerance development in γ-protein kinase c null mutant mice is dependent on genetic background. Alcohol Clin Exp Res 1999;23:387–397.

    PubMed  CAS  Google Scholar 

  148. Harris RA, McQuilkin SJ, Paylor R, Abeliovich A, Tonegawa S, Wehner JM. Mutant mice lacking the γ isoform of protein kinase c show decreased behavioral actions of ethanol and altered function of γ-aminobutyrate type A receptors. Proc Natl Acad Sci USA 1995;92:3658–3662.

    Article  PubMed  CAS  Google Scholar 

  149. Bowers BJ, Wehner JM. Ethanol consumption and behavioral impulsivity are increased in protein kinase Cγ null mutant mice. J Neurosci 2001;21:RC180.

    PubMed  CAS  Google Scholar 

  150. Bowers BJ, Elliott KJ, Wehner JM. Differential sensitivity to the anxiolytic effects of ethanol and flunitrazepam in PKCγ null mutant mice. Pharmacol Biochem Behav 2001;69:99–110.

    Article  PubMed  CAS  Google Scholar 

  151. Thiele TE, Willis B, Stadler J, Reynolds JG, Bernstein IL, McKnight GS. High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase A-mutant mice. J Neurosci 2000;20:RC75.

    PubMed  CAS  Google Scholar 

  152. Ruan Y, Tecott L, Jiang M-M, Jan LY, Jan YN. Ethanol hypersensitivity and olfactory discrimination defect in mice lacking a homolog of Drosophila neuralized. Proc Natl Acad Sci USA 2001;98:9907–9912.

    Article  PubMed  CAS  Google Scholar 

  153. Grisel JE, Mogil JS, Grahame NJ, et al. Ethanol oral self-administration is increased in mutant mice with decreased β-endorphin expression. Brain Res 1999;835:62–67.

    Article  PubMed  CAS  Google Scholar 

  154. Hall FS, Sora I, Uhl GR. Ethanol consumption and reward are decreased in μ-opiate receptor knockout mice. Psychopharmacology 2001;154:43–49.

    Article  PubMed  CAS  Google Scholar 

  155. Weinshenker D, Rust NC, Miller NS, Palmiter RD. Ethanol-associated behaviors of mice lacking norepinephrine. J Neurosci 2000;20:3157–3164.

    PubMed  CAS  Google Scholar 

  156. Popova NK, Vishnivetskaya GB, Ivanova EA, Skrinskaya JA, Seif I. Altered behavior and alcohol tolerance in transgenic mice lacking MAO A: a comparison with effects of MAO A inhibitor clorgyline. Pharmacol Biochem Behav 2000;67:719–727.

    Article  PubMed  CAS  Google Scholar 

  157. Maul B, Siems W-E, Hoehe MR, Grecksch G, Bader M, Walther T. Alcohol consumption is controlled by angiotensin II. FASEB J 2001;15:1640–1642.

    PubMed  CAS  Google Scholar 

  158. Risinger FO, Freeman PA, Greengard P, Fienberg AA. Motivational effects of ethanol in DARP-32 knock-out mice. J Neurosci 2001;21:340–348.

    PubMed  CAS  Google Scholar 

  159. Szumlinski KK, Toda S, Middaugh LD, Worley PF, Kalivas PW. Evidence for a relationship between group1 mGluR hypofunction and ethanol sensitivity in Homer2 null mutant mice. Ann NY Acad Sci 2003;1003:468–471.

    Article  PubMed  Google Scholar 

  160. Cowen MS, Schumann G, Yagi T, Spanagel R. Role of Fyn tyrosine kinase in ethanol consumption by mice. Alcohol Clin Exp Res 2003;27:1213–1219.

    Article  PubMed  CAS  Google Scholar 

  161. Boehm SL, II, Peden L, Chang R, Harris RA, Blednov YA. Deletion of the fyn-kinase gene alters behavioral sensitivity to ethanol. Alcohol Clin Exp Res 2003;27:1033–1040.

    Article  PubMed  CAS  Google Scholar 

  162. Yaka R, Tang KC, Camarini R, Janak PH, Ron D. Fyn kinase and NR2B-containing NMDA receptors regulate acute ethanol sensitivity but not ethanol intake or conditioned reward. Alcohol Clin Exp Res 2003;27: 1736–1742.

    Article  PubMed  CAS  Google Scholar 

  163. Hungund BL, Szakall I, Adam A, Basavarajappa BS, Vadasz C. Cannabinoid CB1 receptor knockout mice exhibit markedly reduced voluntary alcohol consumption and lack alcohol-induced dopamine release in the nucleus accumbens. J Neurochem 2003;84:698–704.

    Article  PubMed  CAS  Google Scholar 

  164. Racz I, Bilkei-Gorzo A, Toth ZE, Michel K, Palkovits M, Zimmer A. A critical role for the Cannabinoid CB1 receptors in alcohol dependence and stress stimulated ethanol drinking. J Neurosci 2003;23:2453–2458.

    PubMed  CAS  Google Scholar 

  165. Naassila M, Pierrefiche O, Ledent C, Daoust M. Decreased alcohol self-administration and increased alcohol sensitivity and withdrawal in CB1 receptor knockout mice. Neuropharmacology 2004;46:243–253.

    Article  PubMed  CAS  Google Scholar 

  166. Blednov YA, Stoffel M, Alva H, Harris RA. A pervasive mechanism for analgesia: activation of GIRK2 channels. Proc Natl Acad Sci USA 2003;100:277–282.

    Article  PubMed  CAS  Google Scholar 

  167. Hill KG, Alva H, Blednov YA, Cunningham CL. Reduced ethanol-induced conditioned taste aversion and conditioned place preference in GIRK2 null mutant mice. Psychopharmacology 2003;169:108–114.

    Article  PubMed  CAS  Google Scholar 

  168. Yang X, Oswald L, Wand G. The cyclic AMP/protein kinase A signal transduction pathway modulates tolerance to sedative and hypothermic effects of ethanol. Alcohol Clin Exp Res 2003;27:1220–1225.

    Article  PubMed  CAS  Google Scholar 

  169. Hall FS, Sora I, Uhl GR. Sex-dependent modulation ethanol consumption in vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) knockout mice. Neuropsychopharmacology 2003;28:620–628.

    Article  PubMed  CAS  Google Scholar 

  170. Phillips TJ, Hen R, Crabbe JC. Complications associated with genetic background effects in research using knockout mice. Psychopharmacology 1999;147:5–7.

    Article  PubMed  CAS  Google Scholar 

  171. Buck KJ. New insights into the mechanisms of ethanol effects on GABAA receptor function and expression, and their relevance to behavior. Alcohol Clin Exp Res 1996;20:198A–202A.

    Article  PubMed  CAS  Google Scholar 

  172. Buck KJ. Molecular genetic analysis of the role of GABAergic systems in the behavioral and cellular actions of alcohol. Behav Genet 1996;26:313–323.

    Article  PubMed  CAS  Google Scholar 

  173. Lewandoski M. Conditional control of gene expression in the mouse. Nat Rev Genet 2001;2:743–755.

    Article  PubMed  CAS  Google Scholar 

  174. Jaisser F. Inducible gene expression and gene modification in transgenic mice. J Am Soc Nephrol 2000;11:S95–S100.

    PubMed  CAS  Google Scholar 

  175. Bolivar VJ, Cook MN, Flaherty L. Mapping of quantitative trait loci with knockout/congenic strains. Genome Res 2001;11:1549–1552.

    Article  PubMed  CAS  Google Scholar 

  176. Wolfer DP, Crusio W, Lipp H-P. Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 2002;25:336–340.

    Article  PubMed  CAS  Google Scholar 

  177. Long AD, Mullaney SL, Mackay TF, Langley CH. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics 1996;144:1497–1510.

    PubMed  CAS  Google Scholar 

  178. Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A. Mouse ENU mutagenesis. Hum Mol Genet 1999;8:1955–1963.

    Article  PubMed  CAS  Google Scholar 

  179. Belknap JK, Hitzemann R, Crabbe JC, Phillips TJ, Buck KJ, Williams RW. QTL analysis and genomewide mutagenesis in mice: complementary genetic approaches to the dissection of complex traits. Behav Genet 2001;31:5–15.

    Article  PubMed  CAS  Google Scholar 

  180. Nadeau JH, Frankel WN. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet 2000;25:381–384.

    Article  PubMed  CAS  Google Scholar 

  181. Novina D, Sharp PA. The RNAi revolution. Nature 2004;430:161–164.

    Article  PubMed  CAS  Google Scholar 

  182. Hommel JD, Sears RM, Georgescu D, Simmons DL, Dileone RJ. Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 2003;9:1539–1544.

    Article  PubMed  CAS  Google Scholar 

  183. Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therapy? Lancet 2003;362:1401–1403.

    Article  PubMed  CAS  Google Scholar 

  184. Shirley RL, Walter NAR, Reilly MT, Fehr C, Buck KJ. Mpdz is a quantitative trait gene for drug withdrawal seizures. Nat Neurosci 2004;7:699–700.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Downing, C., Bennett, B., Johnson, T.E. (2005). Murine Models of Alcoholism. In: Peltz, G. (eds) Computational Genetics and Genomics. Humana Press. https://doi.org/10.1007/978-1-59259-930-1_9

Download citation

Publish with us

Policies and ethics