Skip to main content

Cardiovascular Magnetic Resonance and X-Ray Computed Tomography

  • Chapter
  • 2001 Accesses

Abstract

There have been considerable advances in cardiovascular cross-sectional imaging techniques. These include cardiac magnetic resonance imaging (CMR) and computed tomography (CT)—electron beam CT (EBCT) and multidetector CT (MDCT). EBCT generates a cross-sectional scan through the chest within a fraction of a second. It is widely used as a means of detecting calcium in the coronary arteries and providing evidence of atherosclerotic disease. This application is presently controversial, as to date, the available data do not yet support the utility of EBCT-detected coronary artery calcium as a diagnostic or prognostic indicator of ischemic heart disease. EBCT has several other potential uses, however, which will be discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pohost GM, O’Rourke RA, eds. Basic Principles of Magnetic Resonance. Principles and Practice of Cardiovascular Imaging. Little, Brown Boston, 1990.

    Google Scholar 

  2. Schroeder S, Kopp AF, Kuettner A, et al. Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patients. Clin Imaging 2002;26:106–111.

    Article  PubMed  Google Scholar 

  3. Fayad ZA, Fuster V, Nikolaou K, Becker C. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation 2002;106:2026–2034.

    Article  PubMed  Google Scholar 

  4. Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation 2003;107:917–922.

    Article  PubMed  Google Scholar 

  5. Becker CR, Knez A, Ohnesorge B, et al. Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. AJR Am J Roentgenol 2000;175:423–424.

    PubMed  CAS  Google Scholar 

  6. Cranney GB, Lotan CS, Dean L, et al. Left ventricular volume measurements using cardiac axis nuclear magnetic imaging: validation by calibrated ventricular angiography. Circulation 1990;52:154–163.

    Google Scholar 

  7. Dell’Italia LI, Blackwell GC, Pearce WI, Pohost GM. Assessment of ventricular volumes using cine magnetic resonance in the intact dog. A comparison of measurement methods. Invest Radiol 1994;2:162–166.

    Article  Google Scholar 

  8. Benjelloun H, Cranney GB, Kirk KA, et al. Interstudy reproducibility of biplane cine nuclear magnetic resonance measurements of left ventricular function. Am J Cardiol 1991;67:1413–1419.

    Article  PubMed  CAS  Google Scholar 

  9. Nagel E, Schneider U, Schalla S, et al. Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson 2000;2:7–14.

    PubMed  CAS  Google Scholar 

  10. Bottini PB, Can AA, Prisant LM, et al. Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 1995;8:221–228.

    Article  PubMed  CAS  Google Scholar 

  11. Young AA, Kramer CM, Ferrari VA, et al. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 1994;90:854–867.

    PubMed  CAS  Google Scholar 

  12. Marcus JT, Gotte LW, DeWaal LK, et al. The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiol Magn Reson 1999;1:1–6.

    CAS  Google Scholar 

  13. Fujita N, Duerinckx AJ, Higgins CB. Variation in left ventricular wall stress with cine magnetic resonance imaging: normal subjects versus dilated cardiomyopathy. Am Heart J 1993;125(5 Pt. 1):1337–1344.

    Article  PubMed  CAS  Google Scholar 

  14. Wu E, Judd RM, Vargas JD, et al. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 2001;357:21–28.

    Article  PubMed  CAS  Google Scholar 

  15. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–1453.

    Article  PubMed  CAS  Google Scholar 

  16. van Rugge FP, van der Wall EE, Spanjersberg SJ, et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 1994;90:127–138.

    PubMed  Google Scholar 

  17. Chiu CW, So NMC, Lam WWM, et al. Combined first-pass perfusion and viability study at mr imaging in patients with non-st segment-elevation acute coronary syndromes: feasibility study. Radiology 2003;226:717–722.

    Article  PubMed  Google Scholar 

  18. Baer FM, Voth E, Theissen P, et al. Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J 1994;15:218–225.

    PubMed  CAS  Google Scholar 

  19. Wilke N, Jerosch-Herold M, Stillman AE, et al. Concepts of myocardial perfusion imaging in magnetic resonance imaging. Magn Reson Quart 1994;10:249–286.

    CAS  Google Scholar 

  20. Schmermund A, Beli MR, Lerman LO, et al. Quantitative evaluation of regional myocardial perfusion using fast x-ray computed tomography. Herz 1997;22:29–39.

    PubMed  CAS  Google Scholar 

  21. Kopp AF, Schroeder S, Kuettner A, et al. Non-invasive coronary angiography with high resolution multi-detector-row computed tomography. Eur Heart J 2002;23:1714–1725.

    PubMed  CAS  Google Scholar 

  22. Schmermund A, Bailey KR, Rumberger JA, et al. An algorithm for noninvasive identification of angiographic three-vessel and/or left main coronary artery disease in symptomatic patients on the basis of cardiac risk and electron-beam computed tomographic calcium scores. J Am Coll Cardiol 1999;33:444–452.

    Article  PubMed  CAS  Google Scholar 

  23. Callister TQ, Raggi P, Cooil B, et al. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 1998;339:1972–1978.

    Article  PubMed  CAS  Google Scholar 

  24. Woo P, Mao S, Wang S, Detrano RC. Left ventricular size determined by electron beam computed tomography predicts significant coronary artery disease and events. Am J Cardiol 1997;79:1236–1238.

    Article  PubMed  CAS  Google Scholar 

  25. O’Rourke RA, Brungate BH, Froelicher VF, et al. American College of Cardiology/American Heart Association expert consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol 2000;36:326–340.

    Article  PubMed  CAS  Google Scholar 

  26. Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clinic Proc 1999;74:243–252.

    Article  CAS  Google Scholar 

  27. Detrano RC, Wong ND, Doherty TM, et al. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults. Circulation 1999;99:2633–2638.

    PubMed  CAS  Google Scholar 

  28. Budoff MI, Shavelle DM, Lamont DH, et al. Usefulness of electron beam computed tomography scanning for distinguishing ischemic from nonischemic cardiomyopathy. J Am Coll Cardiol 1998;32:1173–1178.

    Article  PubMed  CAS  Google Scholar 

  29. Fujita N, Chazoulliers AE, Hartialia JJ. Quantification of mitral regurgitation by velocity encoding cine nuclear magnetic resonance imaging. J Am Coll Cardiol 1994;23:951–952.

    Article  PubMed  CAS  Google Scholar 

  30. Friedrich MG, Strohm O, Schuiz-Menger I, et al. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 1998;97:1802–1509.

    PubMed  CAS  Google Scholar 

Recommended Reading

  1. Detrano RC, Wong ND, Doherty TM, et al. Coronary calcium does not accurately predict near-term future coronary events in high risk adults. Circulation 1999;99(20):2633–2638.

    PubMed  CAS  Google Scholar 

  2. O’Rourke RA, Brundage BH, Froelicher VF, et al. American College of Cardiology/American Heart Association Expert Consensus Document on Electron-Beam Computed Tomography for the Diagnosis and Prognosis of Coronary Artery Disease. J Am Coll Cardiol 2000;36:326–340.

    Article  PubMed  CAS  Google Scholar 

  3. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 1993;328:828–832.

    Article  PubMed  CAS  Google Scholar 

  4. Martin ET, Fuisz AR, Pohost GM. Imaging cardiac structure and pump function. Cardiol Clin 1998;16:135–160.

    Article  PubMed  CAS  Google Scholar 

  5. Pohost GM, O’Rourke RA. Basic Principles of Magnetic Resonance. Principles and Practice of Cardiovascular Imaging. Little, Brown, Boston, 1990.

    Google Scholar 

  6. Forder JR, Pohost GM. Cardiovascular nuclear magnetic resonance: basic and clinical applications. J Clin Invest 2003;11:1630–1639.

    Article  CAS  Google Scholar 

  7. Pohost GM, Hung L, Doyle M. Clinical use of cardiovascular magnetic resonance; special review, clinician update. Circulation 2003;108:647–653.

    Article  PubMed  Google Scholar 

  8. Manning WJ, Pennell DJ. Cardiovascular Magnetic Resonance. Churchill Livingstone, New York, 2002.

    Google Scholar 

  9. Ohnesorge BM, Becker CR, Flohr TG, Reiser MF. Multislice CT Cardiac Imaging. Springer-Verlag, Berlin, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pohost, G.M., Sarma, R.J., Colletti, P.M., Doyle, M., Biederman, R.W.W. (2005). Cardiovascular Magnetic Resonance and X-Ray Computed Tomography. In: Rosendorff, C. (eds) Essential Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-918-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-918-9_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-370-1

  • Online ISBN: 978-1-59259-918-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics